
 Chapter 10: Theatre Bookings 159

10 Theatre Bookings

In this final program, we will bring together many of the programming techniques which you

have met earlier in the book, including interactive user interface design, file handling, and

the display of graphics images. The project is large and may take several days to complete.

However, much of the code is similar to work carried out previously in this book. You may

save time by cutting and pasting methods from previous programs you have written, then

making any necessary alterations.

Newbridge Theatre

You are asked to produce a seat booking program which could be used by staff working in

the box office of the Newbridge Theatre. Customers phone the box office to obtain

information about forthcoming events, then may book seats for a particular performance.

Requirements of the system:

¶ The program should display information and images of events, to help office staff in

answering customer enquiries. The dates and times of performances for a particular

event should be shown.

¶ When a performance is selected, a plan of the theatre will be displayed to indicate

available seats. The theatre plan is:

¶ As seats are selected, the total price of tickets will be displayed. The theatre has a

policy of charging the same price for all seats at a performance, although seat prices

may differ between performances.

¶ If the customer wishes to proceed with a booking, their name, address, e-mail and

telephone details will be required. For existing customers, these details can be

selected from a database. For new customers, the details must be entered into the

system.

 160 Programming with C#.NET

¶ The customer will confirm their booking by providing credit card details. (Note:

ƻōǘŀƛƴƛƴƎ ǇŀȅƳŜƴǘ ŦǊƻƳ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ōŀƴƪ ŀƴŘ ŘŜƭƛǾŜǊƛƴƎ ǘƛŎƪŜǘǎ ǘƻ ǘƘŜ ŎǳǎǘƻƳŜǊ

are outside the scope of the system which you are asked to produce.)

¶ Theatre staff should be able to review the bookings received and the total value of

ticket sales for any performance.

¶ Staff should be able to add new events and performances to the system.

Design

As for the College Courses program in chapter 8, we will separate the code into two

categories:

¶ A set of Windows Forms will be used for on-screen input by the user and for the

output of data using text or graphics as required.

¶ A set of Object Classes will be used to handle all database operations, including the

loading, saving and updating of records.

A good starting point for a complex project is to identify classes of objects for the data

model. We will use the following structure:

¶ An event may have a number of performances on different days or at different

times.

¶ Each performance will have a complete set of seats available in the theatre.

¶ A customer may make one or more bookings.

¶ Each booking will be for a particular performance, and may be for a number of

seats.

event performance seat

customer booking

 Chapter 10: Theatre Bookings 161

.ŜƎƛƴ ǘƘŜ ǇǊƻƧŜŎǘ ōȅ ŎǊŜŀǘƛƴƎ ŀ ΨtheatreBookingsΩ ŘŀǘŀōŀǎŜ

Set up a table for storing data for each of the object classes. Begin with an Event table:

Make the eventID field an auto-ƴǳƳōŜǊ ōȅ ǎŜƭŜŎǘƛƴƎ ΨIdentity SpecificationΩ ŀƴŘ ǎŜǘǘƛƴƎ ǘƘŜ

Ψ(Is Identity)Ω ǇǊƻǇŜǊǘȅ ǘƻ ΨTrueΩΦ

When the table design is completed, click the 'Update' button to add the table to the

database.

 162 Programming with C#.NET

Add a Performance table. Set the performanceID field to be an auto-number.

Add a Seat table. A primary key does not need to be set, so delete the key from the first line

of the table by right-clicking on the 'key' icon:

 Chapter 10: Theatre Bookings 163

Add a Customer table, making the customerID field an auto-number:

We finally require a Booking table. Make the bookingID field an auto-number:

 164 Programming with C#.NET

Click the 'Refresh' icon in the Server Explorer window, then check that all the tables have

been created correctly:

Right-click on theatreBookings.mdf and delete the connection to the database.

We can now plan how the Windows forms of the project will be related. From the

specification it seems that we will need four program sections: to handle the input of new

event and performance details, to process a booking by a customer, to display customer

records for the theatre staff, and to display the seat bookings and ticket sales for each

performance.

Theatre Bookings

Events

Booking

Customers

Add

Event

Add

Performance

Display

Events

Display

Seat Plan

Customer

Details

Payment

View

Customer

Details

Ticket Sales

Display

Ticket

Sales

 Chapter 10: Theatre Bookings 165

Start a new Visual C# project. Select Windows Forms Application and give the name

theatreBookings.

Rename Form1 as DisplayEvents. Add a menuStrip component, and configure the menu

options as shown:

Add a Windows Form and give this the name ΨAddEventΩ. Link the AddEvent form to the

menu system by adding code to ǘƘŜ ΨAdd eventΩ ƳŜƴǳ ƻǇtion:

 private void addEventToolStripMenuItem_Click(object sender, EventArgs e)
 {
 AddEvent frmAddEvent = new AddEvent();
 frmAddEvent.ShowDialog();
 }

 166 Programming with C#.NET

Add components to the AddEvent form. For the txtDescription text box, set the Multiline

property to True.

For each theatre event, it would be good to provide a picture image and a written

description of the event. Go to the Internet and find suitable images and text for some

events that the theatre might host:

West Side Story is set in the East 40s and West 50s

of the Upper West Side neighborhood in New

York City in the mid -1950s, an ethnic, blue -collar

neighborhood. The musical explores the rival ry

between the Jets and the Sharks, two teenage

street gangs of different ethnic backgrounds.

The members of the Sharks from Puerto Rico are

taunted by the Jets, a Polish -American working -

class group. Tony, one of the Jets, falls in love

with Maria, the s ister of Bernardo, the leader of

the Sharks.

textBox

txtDescription

textBox

txtTitle

button

btnClose

button

btnStore

pictureBox

pictureBox1

button

btnLoad

 Chapter 10: Theatre Bookings 167

Add code for the Load and Close buttons on the AddEvent form. A variable called

imagename is also required:

 public partial class AddEvent : Form
 {
 string imagename;

 public AddEvent()
 {
 InitializeComponent();
 }

 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }

 private void btnLoad_Click(object sender, EventArgs e)
 {
 try
 {
 FileDialog fileDialog = new OpenFileDialog();
 fileDialog.Filter = "Image File (*.jpg;*.bmp;*.gif)|*.jpg;*.bmp;*.gif";

 if (fileDialog.ShowDialog() == DialogResult.OK)
 {
 imagename = fileDialog.FileName;
 Bitmap newimg = new Bitmap(imagename);
 pictureBox1.SizeMode = PictureBoxSizeMode.StretchImage;
 pictureBox1.Image = (Image)newimg;
 }
 file Dialog = null;
 }
 catch
 {
 MessageBox.Show("Error");
 }
 }
 }

wǳƴ ǘƘŜ ǇǊƻƎǊŀƳΦ {ŜƭŜŎǘ ǘƘŜ ΨAdd eventΩ ƳŜƴǳ ƻǇǘƛƻƴ ǘƻ ƻǇŜƴ ǘƘŜ AddEvent form. Click the

ΨLoad pictureΩ ōǳǘǘƻƴΣ ŀƴŘ check that a picture image can be selected and displayed.

 168 Programming with C#.NET

/ǊŜŀǘŜ ŀ Ŏƭŀǎǎ ŦƛƭŜ ŎŀƭƭŜŘ ΨǘƘŜŀǘǊŜ9ǾŜƴǘΩ. (Note: It is not possible to create a class called

ΨeventΩΣ ŀǎ ǘƘŜ ǿƻǊŘ ΨŜǾŜƴǘΩ Ƙŀǎ ŀ ǎǇŜŎƛŀƭ ƳŜŀƴƛƴƎ ƛƴ ǘƘŜ /І ƭŀƴƎǳŀƎŜΦύ

Open the theatreEvent class file and add the properties for a theatreEvent object. Since we
ŀǊŜ ǳǎƛƴƎ ǇƛŎǘǳǊŜ ƛƳŀƎŜǎΣ ƛǘ ƛǎ ƴŜŎŜǎǎŀǊȅ ǘƻ ƛƴŎƭǳŘŜ ŀ Ψusing DrawingΩ ŘƛǊŜŎǘƛǾŜΥ

using System.Linq;
using System.Text;

using System.Drawing;

namespace theatreBooki ngs
{
 class theatreEvent
 {
 private int eventID;
 private string title;
 private string description;
 private Image imageData;
 }
}

We will now add the series of methods required to move data values into or out of each
property field of the theatreEvent objects.

 private string description;
 private Image imageData;

 public void setEventID(int e)
 {
 eventID = e;
 }

 public int getEventID()
 {
 return eventID;
 }

 Chapter 10: Theatre Bookings 169

 public void setTitle(string t)
 {
 title = t;
 }

 public string getTitle()
 {
 return title;
 }

 public void setDescription(string d)
 {
 description = d;
 }

 public string getDescription()
 {
 return description;
 }

 public void setImage(Image im)
 {
 imageData = im;
 }

 public Image getImage()
 {
 return imageData;
 }
 }
}

We need to create a method to save theatreEvent records into the database. Before doing

thatΣ ŀ ŦŜǿ ƳƻǊŜ ΨusingΩ ŘƛǊŜŎǘƛǾŜǎ ǿƛƭƭ ōŜ ƴŜŜŘŜŘΣ ŀƴŘ ǘƘŜ ŘŀǘŀōŀǎŜ ƭƻŎŀǘƛƻƴ Ƴǳǎǘ ōŜ

specified. You should also set up a variable to keep a count of the number of theatreEvent

objects in the system, and an array to link to these theatreEvent objects.

using System.Text;
using System.Drawing;

using System.IO;
using System.Data.SqlClient;
using System.Data;

namespace theatreBookings
{
 class theatreEvent
 {

 private static string databaseLocation = "C: \ \ C#\ \ theatreBookings.mdf;";
 public static int eventCount;
 public static theatreEvent[] eventObject = new theatreEvent[12];

 private int eventID;
 private string title;
 private string description;
 private Image imageData;

 170 Programming with C#.NET

 bƻǘƛŎŜ ǘƘŀǘ ǘƘŜ ǾŀǊƛŀōƭŜǎ ΨeventCountΩ ŀƴŘ ΨeventObjectΩ ƘŀǾŜ ōŜŜƴ ƳŀǊƪŜŘ ŀǎ ΨstaticΩΦ This

means that they occur only once and are used by the whole class.

By contrast, the properties eventID, title , description and imageData ŀǊŜ ΨdynamicΩΥ ŀ ǎŜǘ

of these variables is created for each new object added whilst the program is running.

We will now add an AddEvent() method to the theatreEvent class. This will convert the

picture image into an array of binary data, then save it into a database record, along with

the event title and description. The same technique was used to store the Fast Food images

in chapter 9. Insert the new method below the list of theatreEvent properties.

 public static void AddEvent(string im, string t, string d)
 {
 FileStream fs;
 fs = new FileStream(im, FileMode.Open, FileAccess.Read);
 byte[] picbyte = new byte[fs.Length];
 fs.Read(picbyte, 0, System.Convert.ToInt32(fs.Length));
 fs.Close();

 SqlConnection con = new SqlConnection(@"Data Source=. \ SQLEXPRESS;
 AttachDbFilename="+ databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 string query = "INSERT INTO Event(title,description,picture) " +
 " VALUES('" + t + "','" + d + "'," + " @pic)";
 SqlParameter picparameter = new SqlParameter();
 picparameter.SqlDbType = SqlDbType.Image;
 picparameter.ParameterName = "pic";
 picparameter.Value = picbyte;
 SqlCommand cmd = new SqlCommand(query, con);
 cmd.Parameters.Add(picparameter);
 cmd.ExecuteNonQuery();
 con.Close();
 }

 Chapter 10: Theatre Bookings 171

Return to the AddEvent ŦƻǊƳ ŀƴŘ ŘƻǳōƭŜ ŎƭƛŎƪ ǘƘŜ ΨSave eventΩ ōǳǘǘƻƴΦ Include a line of

code in the button click method to call an AddRecord() method, then add this method:

 private void btnStore_Click(object sender, EventArgs e)
 {
 addRecord();
 }

 private void addRecord()
 {
 try
 {
 if (imagename != "")
 {
 theatreEvent.AddEvent(imagename, txtTitle.Text, txtDescription.Text);
 MessageBox.Show("Event Added");
 }
 }
 catc h
 {
 MessageBox.Show("File error");
 }
 }

Notice how this method calls AddEvent() in the theatreEvent class to save the event. We

simply pass the necessary data to the AddEvent() method as a series of parameters.

 172 Programming with C#.NET

A problem might occur when entering titles or descriptions of events if apostrophe ŎƘŀǊŀŎǘŜǊǎ όΨύ ŀǊŜ

present in the text, for example:

 ά¢ƘŜ ǎƻƴƎǎ ƛƴŎƭǳŘŜ 'Sherry', 'Walk Like A Man' and 'Big Girls Don't Cry'Φέ

The apostrophe is used as a special control character by the C# language, and can cause an error

when data is being uploaded to the database. Fortunately there is a simple solution. The computer

has an alternative symbol which looks similar to an apostrophe, but is not recognised as a C# control

character. This is located in the upper left hand corner of the keyboard.

Return to the addRecord() method in the AddEvent form, and insert lines of code to make the

replacements from the standard apostrophe to the alternative symbol:

 Replace("'", "`")

 private void addRecord()
 {
 try
 {

 txtTitle.Text = txtTitle.Text .Replace("'", "`");
 txtDescription.Text = txtDescription.Text .Replace("'", "`");

 if (imagename != "")
 {
 theatreEvent.AddEvent(imagename, txtTitle.Text, txtDescription.Text);
 MessageBox.Show(" Event Added");
 }
 }
 catch
 {
 MessageBox.Show("File error");
 }
 }

standard apostrophe alternative symbol

 Chapter 10: Theatre Bookings 173

Add a series of event records and check that these are being stored correctly in the

database Event table:

We can now return to the DisplayEvents form and work on the task of displaying the event

text and pictures.

Add a panel to the DisplayEvents ŦƻǊƳ ŀƴŘ ƴŀƳŜ ǘƘƛǎ ΨpnlEventsΩΦ {Ŝǘ ǘƘŜ ƘŜƛƎƘǘ ƻŦ ǘƘŜ

panel to 3,000 pixels.

Click once on the DisplayEvents form beyond the edge of the panel to select it, then set the

ΨAutoScrollΩ ǇǊƻǇŜǊǘȅ ǘƻ ΨTrueΩΦ wǳƴ ǘƘŜ ǇǊƻƎǊŀƳ ǘƻ ŎƘŜŎƪ ǘƘŀǘ ŀ ǎŎǊƻƭƭƛƴƎ ǿƛƴŘƻǿ Ƙŀǎ ōŜŜƴ

produced on the DisplayEvents form.

 174 Programming with C#.NET

We must now return to the theatreEvent class file to add a method to load the event

records from the database. Insert the loadEvents() method below the list of properties:

 private int eventID;
 private string title;
 private s tring description;
 private Image imageData;

 public static void loadEvents()
 {
 SqlDataAdapter dAdapt;
 DataSet dSet;

 SqlConnection con = new SqlConnection(@"Data Source=. \ SQLEXPRESS;
 AttachDbFilename="+ databaseLocation+ "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 dAdapt = new SqlDataAdapter();
 dAdapt.SelectCommand = new SqlCommand("SELECT * FROM Event", con);
 dSet = new DataSet("dSet");
 dAdapt.Fill(dSet);
 con.Close();
 DataTable dTable;
 dTable = dSet.Tables[0];

 DataTable dataTable = dSet.Tables[0];
 eventCount = da taTable.Rows.Count;

 for (int i = 0; i < eventCount; i++)
 {
 eventObject[i] = new theatreEvent ();
 DataRow dataRow = dataTable.Rows[i];
 string finalString = "pic" + Convert.ToString(i);
 FileStream FS1 = new FileStream(finalString + "jpg", FileMode.Create);
 byte[] blob = (byte [])dataRow[3];
 FS1.Write(blob, 0, blob.Length);
 FS1.Close();
 FS1 = null;

 eventObject[i].setImage(Image.FromFile(finalString + "jpg"));
 eventObject[i].setEventID((int)dataRow[0]);
 eventObject[i].setTitle(Convert.ToString(dataRow[1]));
 eventObject[i].setDescription(Convert.ToStr ing(dataRow[2]));
 }
 }

This method accesses the database, then uses a loop to create an eventObject from each
event record in the database. The picture data is converted into .JPG image format so that
it can be easily displayed.

 Chapter 10: Theatre Bookings 175

Go to the DisplayEvents form and add code to the DisplayEvents() method. This calls the
loadEvents() method in the theatreEvent class, to load the data from the database and set
up an eventObject for each theatre event.

 public DisplayEven ts()
 {
 InitializeComponent();

 theatreEvent.eventCount = 0;
 try
 {
 theatreEvent.loadEvents();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

Run the program and check that no error message is displayed. If all is well, we can now

display the events on the panel. Write a displayPictures() method, and call this from the

DisplayEvents() method.

 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }

 displayPictures();
 }

 private void displayPictures()
 {
 PictureBox[] pictureBox = new PictureBox[8];
 Label[] label = new Label[8];
 TextBox[] textBox = new TextBox[8];
 Button[] button = new Button[8];

 for (int i = 0; i < theatreEvent.eventCount; i++)
 {
 pictureBox[i] = new PictureBox();
 pictureBox[i].Image = theatreEvent.eventObject[i].getImage();
 pictureBox[i].Size = new System.Drawing.Size(240, 240);
 pictureBox[i].Location = new System.Drawing.Point(60, 60 + 300 * i);
 pict ureBox[i].SizeMode = PictureBoxSizeMode.StretchImage;
 pnlEvents.Controls.Add(pictureBox[i]);
 pictureBox[i].Refresh();

 label[i] = new Label();
 label[i].Size = new System.Drawing.Size(200, 30);
 label[i].Text = theatreEvent.eventObject[i].getTitle();
 label[i].Font = new System.Drawing.Font("Microsoft Sans Serif", 14F,
 System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point,
 ((byte)(0)));
 label[i].Location = new System.Drawing.Point(320, 60 + 300 * i);
 pnlEvents.Controls.Add(label[i]);
 }
 }

 176 Programming with C#.NET

Run the program. The titles and images for your theatre events should be displayed in the

scrolling window.

Return to the displayPictures() method and add two more sections of code. These will

produce a textBox to display the description of the event, and a button which can be clicked

to go to the bookings screen.

 label[i].Location = new System.Drawing.Point(320, 60 + 300 * i);
 pnlEvents.Controls.Add(label[i]);

 textBox[i] = new TextBox();
 textBox[i].TabStop = false;
 textBo x[i].BorderStyle = System.Windows.Forms.BorderStyle.None;
 textBox[i].Location = new System.Drawing.Point(320, 100 + 300 * i);
 textBox[i].Multiline = true;
 textBox[i].Size = new System.Drawing.Size(500, 200);
 textBox[i].Text = theatreEvent.eventObject[i].getDescription();
 textBox[i].ReadOnly = true;
 textBox[i].Font = new System.Drawing.Font("Microsoft Sans Serif", 10F,
 System.Drawing.FontStyle .Regular, System.Drawing.GraphicsUnit.Point,
 ((byte)(0)));
 pnlEvents.Controls.Add(textBox[i]);

 button[i] = new Button();
 button[i].Location = new System.Drawing.Point(700 , 60 + 300 * i);
 button[i].Size = new System.Drawing.Size(112, 28);
 button[i].Text = "Book seats";
 String buttonName = "btn" + i;
 button[i].Name = buttonName;
 button[i].Click + = new EventHandler(loadPlan);
 pnlEvents.Controls.Add(button[i]);

 }
 }

 Chapter 10: Theatre Bookings 177

 ²ƘŜƴ ǘƘŜ ΨBook seatsΩ ōǳǘǘƻƴ ƛǎ ŎƭƛŎƪŜŘΣ ǘƘƛǎ ǿƛƭƭ Ŏŀƭƭ ŀ loadPlan() method, to display a

seating plan of the theatre. For now, just create an empty loadPlan() method immediately

after the displayPictures() method. We will come back to complete this later.

 private void loadPlan(object sender, EventArgs e)
 {

 }

We can now run the program tƻ ŎƘŜŎƪ ǘƘŀǘ ǘƘŜ ŜǾŜƴǘ ǘŜȄǘ ŀƴŘ ΨBook seatsΩ ōǳǘǘƻƴǎ ŀǊŜ

displayed.

Before working on the theatre bookings, we must produce a form for entering the seat

prices, dates and times of performances.

Add a Windows Form to the project. Give this thŜ ƴŀƳŜ ΨAddPerformanceΩΦ

 178 Programming with C#.NET

Set up components on the form as shown:

Link the AddPerformance form to the menu system by double ŎƭƛŎƪƛƴƎ ǘƘŜ Ψ!ŘŘ

ǇŜǊŦƻǊƳŀƴŎŜΩ ƳŜƴǳ ƻǇǘƛƻƴ ƻƴ ǘƘŜ DisplayEvents form, then add lines of code:

 private void addPreformanceToolStripMenuItem_Click(object sender, EventArgs e)

 {
 AddPerformance frmAddPerformance = new AddPerformance();
 frmAddPerformance.ShowDialog();
 }

dateTimePicker

dateTimePicker1

textBox

txtTime

textBox

txtPrice

button

btnClose

button

btnAdd

comboBox

combEvents

listBox

listBox1

 Chapter 10: Theatre Bookings 179

The first requirement for the AddPerformance form is to load a list of the theatre events
into the drop down combo box.

Event objects have already been created when the program first runs, so there is no need to
reload data from the database. We can simply use a loop to access the title from each
eventObject and add this to the comboBox list.

Write a loadEvents() method for the AddPerformance form. Call this from the
AddPerformance() method. !ƭǎƻ ŀŘŘ ŎƻŘŜ ǘƻ ǘƘŜ ΨcloseΩ ōǳǘǘƻƴΦ

 public AddPerformance()
 {
 Initi alizeComponent();

 loadEvents();
 }

 private void loadEvents()
 {
 string eventTitle;
 combEvents.Items.Clear();
 for (int i = 0; i < theatreEvent.eventCount; i++)
 {
 eventTitle = theatreEvent.eventObject[i].getTitle();
 combEvents.Items.Add(eventTitle);
 }
 }

 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }

Run the program and check that the list of events is shown correctly in the comboBox list.

 180 Programming with C#.NET

²ƘŜƴ ǘƘŜ ǳǎŜǊ ŎƭƛŎƪǎ ǘƘŜ Ψadd performanceΩ ōǳǘǘƻƴΣ ǿŜ ǿŀƴǘ ǘǿƻ ǘƘƛƴƎǎ ǘƻ ƘŀǇǇŜƴΥ

¶ The eventID, performance date, time and ticket price should be saved into the

Performance table of the database.

¶ A set of seat records will be created for the ǇŜǊŦƻǊƳŀƴŎŜΣ ŀƭƭ ƛƴƛǘƛŀƭƭȅ ǎŜǘ ŀǎ Ψavailable

for bookingΩΦ

In preparation for these tasks, we will ǎŜǘ ǳǇ ŀ Ŏƭŀǎǎ ŦƛƭŜ ŎŀƭƭŜŘ ΨperformanceΩΦ

Add the properties for performance objects, and a set of methods for transfering data into

and out of the property fields.

 class performance
 {
 private int performanceID;
 private int eventID;
 private DateTime performanceDate;
 private stri ng time;
 private double seatPrice;

 public void setPerformanceID(int pID)
 {
 performanceID = pID;
 }

 public int getPerformanceID()
 {
 return performanceID;
 }

 public void setEventID(int e)
 {
 eventID = e;
 }

 Chapter 10: Theatre Bookings 181

 public int getEventID()
 {
 return eventID;
 }

 public void setDate(DateTime d)
 {
 performanceDate = d;
 }

 public DateTime getDate()
 {
 return performanceDate;
 }

 public void setTime(string t)
 {
 time = t;
 }

 public string getTime()
 {
 return time;
 }

 public void setPrice(double p)
 {
 seatPrice = p;
 }

 public double getPrice()
 {
 return seatPrice;
 }

We will now create a method to save a performance record into the database. It will be
nŜŎŜǎǎŀǊȅ ǘƻ ŀŘŘ Ψusing SqlClientΩ ŀƴŘ Ψusing DataΩ ŘƛǊŜŎǘƛǾŜǎΣ ŀƴŘ ǘƻ ƎƛǾŜ ǘƘŜ ŘŀǘŀōŀǎŜ
location.

using System.Linq;
using System.Text;

using System.Data.SqlClient;
using System.Data;

namespace theatreBookings
{
 class performance
 {
 private static string databaseLocation = "C: \ \ C#\ \ theatreBookings.mdf;";

 182 Programming with C#.NET

Write the AddPerformance() method. Remember that performanceID is an auto-number
generated by the computer. We will need to know this value, as it forms a property of the
seat objects which will be created for the performance. We can obtain the performanceID
ŦƻǊ ǘƘŜ ǊŜŎƻǊŘ ǿƘƛŎƘ Ƙŀǎ Ƨǳǎǘ ōŜŜƴ ǎŀǾŜŘ ōȅ ǳǎƛƴƎ ǘƘŜ ΨSELECT SCOPE_IDENTITY()Ω
command.

 private int performanceID;
 private int eventID;
 private DateTime performanceDate;
 private string time;
 private double seatPrice;

 public static void AddPerformance(int ID, DateTime d, string t, double p)
 {
 SqlConnection con = new SqlConnection(@"Data Source=. \ SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 SqlCommand cmPerformance = new SqlCommand();
 cmPerformance. Connection = con;
 cmPerformance.CommandType = CommandType.Text;
 cmPerformance.CommandText = "INSERT INTO Performance(eventID, performanceDate, "
 + " time, seatPrice) VALUES ('" + ID + "','" + d.ToString("MM/dd/yyyy") + "','"
 + t + "','" + p + "')";
 cmPerformance.ExecuteNonQuery();

 cmPerformance.CommandText = "SELECT SCOPE_IDENTITY()";
 int identity = Convert.ToInt32(cmPerformance.ExecuteScalar());
 con.Close();

 assignSeats(identity);
 }

Add the assignSeats() method to create the set of seat objects for the performance.

 public static void assignSeats(int performanceID)
 {
 SqlConnection con = new SqlConnection(@"D ata Source=. \ SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 SqlCommand cmSeat = new SqlCommand();
 cmSeat.Connection = con;
 cmSeat.CommandType = CommandType.Text;
 for (int r = 1; r <= 11; r++)
 {
 char rowLetter = Convert.ToChar(64 + r);
 if (r > 8)
 rowLetter = Convert.ToCha r(65 + r);
 for (int s = 1; s <= 20; s++)
 {
 cmSeat.CommandText = "INSERT INTO Seat(seatRow,seatNumber, "
 + " performanceID,available,bookingID) VALUES ('" + rowLetter + "','"
 + s + "','" + performanceID + "','" + "0" + "','" + "0" + "')";
 cmSeat.ExecuteNonQuery();
 }
 }
 con.Close();
 }

 Chapter 10: Theatre Bookings 183

This method creates a block of 11 rows of 20 seats. Some rows in the theatre have fewer

than 20 seats, but the additional records can just be ignored and will not be accessed by the

booking system.

bƻǘƛŎŜ Ƙƻǿ ǘƘŜ Ǌƻǿ ƴǳƳōŜǊ ƛǎ ŎƻƴǾŜǊǘŜŘ ǘƻ ŀ ƭŜǘǘŜǊ ǳǎƛƴƎ !{/LL ŎƻŘŜΥ ƭŜǘǘŜǊ Ψ!Ω Ƙŀǎ !{/LL

ǾŀƭǳŜ срΣ Ψ.Ω ƛǎ ссΣ ŜǘŎΦ hƴŜ ǎƭƛƎƘǘ complication is that the theatre does not use a row letter

ΨLΩΣ ƎƻƛƴƎ ƛƴǎǘŜŀŘ ŦǊƻƳ Ǌƻǿ ΨIΩ ǘƻ Ǌƻǿ ΨWΩΦ ¢Ƙƛǎ ƛǎ ŎƻƳƳƻƴ ǇǊŀŎǘƛŎŜΣ ǘƻ ŀǾƻƛŘ ŎƻƴŦǳǎƛƻƴ

ōŜǘǿŜŜƴ ǘƘŜ ƭŜǘǘŜǊ ΨLΩ ǘƘŜ ƴǳƳōŜǊ мΦ ²Ŝ ŎƻƳǇŜƴǎŀǘŜ ŦƻǊ ǘƘŜ ƳƛǎǎƛƴƎ ƭŜǘǘŜǊ ōȅ ŀƭǘŜǊƛƴƎ ǘƘŜ

ASCII code calculation for row numbers above 8.

Return to the AddPerformance forƳ ŀƴŘ ŘƻǳōƭŜ ŎƭƛŎƪ ǘƘŜ Ψadd performanceΩ ōǳǘǘƻƴΦ Add

code to the button click method which will gather the necessary information for a new

performance, then send this to the AddPerformance() method of the performace class.

 private void btnAdd_Click(object sender, EventArgs e)
 {
 DateTime performanceDate = Convert.ToDateTime(dateTimePicker1.Value);
 string performanceTime = txtTime.Text;
 double seatPrice = Convert.ToDouble(txtPrice.Text);
 int i = combEvents.SelectedIndex;
 int eventID = theatreEvent.eventObject[i].getEventID();
 performance.AddPerformance(eventID, performanceDate, performanceTime,
 seatPrice);
 this.Close();
 }

Run the program and enter test data for performances of different events. When each

ŜƴǘǊȅ ƛǎ ŎƻƳǇƭŜǘŜΣ ŎƭƛŎƪ ǘƘŜ Ψadd performanceΩ ōǳǘǘƻƴΦ

 184 Programming with C#.NET

Exit from the program and go to the Server Explorer. Check that the performances you have

entered are stored correctly in the Performance table. Check that the eventID corresponds

with the correct theatre event.

Go now to the Seat table. A set of 11 rows (A-L) of 20 seats should have been created for

ŜŀŎƘ ǇŜǊŦƻǊƳŀƴŎŜΦ ¢ƘŜ ΨavailableΩ ŦƛŜƭŘ ƻŦ ŜŀŎƘ ǎŜŀǘ ǊŜŎƻǊŘ ǿƛƭƭ ōŜ ǎŜǘ ǘƻ лΣ ƛƴŘƛŎŀǘƛƴƎ ǘƘŀǘ

the seat has not yet been booked.

 Chapter 10: Theatre Bookings 185

One additional feature which we will include on the AddPerformance form is a list of the

performances which have already been entered for each event. This information will be

displayed in the listBox.

Begin by going to the performance class file and adding a loadPerformances() method.

This takes as a parameter the eventID of the required theatre event, then searches the

performance table in the database for any performances of this event.

When performance records have been found, these are used to create a set of performance

objects.

We must also add variables to record the number of performance objects created, and an

array to hold these objects.

 private int performanceID;
 private int eventID;
 private DateTime performanceDate;
 private string time;
 private double seatP rice;

 public static int performanceCount;
 public static performance[] performanceObject = new performance[12];

 public static void loadPerformances(int e)
 {
 performanceCount = 0;
 DataSet dsPerforman ces = new DataSet();

 SqlConnection con = new SqlConnection(@"Data Source=. \ SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 SqlCommand cmPerformances = new SqlCommand();
 cmPerformances.Connection = con;
 cmPerformances.CommandType = CommandType.Text;
 cmPerformances.CommandText = "SELECT * FROM Performance WHERE eventID='"
 + e + "'";
 SqlDataAdapter daPerformances = new SqlDataAdapter(cmPerformances);
 daPerformances.Fill(dsPerformances);
 con.Close();

 performanceCount = dsPerformances.Tables[0].Rows.Count;
 for (int i = 0; i < performanceCount; i++)
 {
 performanceObject[i] = new performance();
 DataRow dataRow = dsPerformances.Tables[0].Rows[i];
 performanceObject[i].setPerformanceID((int)dataRow[0]);
 performanceObject[i].setEventID((int)dataRow[1]);
 performanceObject[i].setDate(Convert.ToDateTime(dataRow[2]));
 performanceObject[i].setTime(Convert.ToString(dataRow[3]));
 performanceObject[i].setPrice(Convert.ToDouble(dataRow[4]));
 }
 }

 186 Programming with C#.NET

Return to the AddPerformance form. Double click the events comboBox to create an

indexchanged() method. This will operate whenever the user selects a different option

from the drop down list.

Add code to the method. This calls the loadPerformances() method in the performance

class file, using eventID to specify which theatre event has been selected. Objects are

created for all performances of the required event. We then use a loop to access each

performance object and display the information in the listBox.

 private void combEvents_SelectedIndexChanged(object sender, EventArgs e)
 {
 listBox1.Items.Clear();
 int i=combEvents.SelectedIndex;
 int eventID = theatreEvent.eventObject[i].getEventID();
 try
 {
 performance.loadPerformances(eventID);
 }
 catch
 {
 MessageBox.Show("File error ");
 }
 for (i = 0; i < performance.performanceCount; i++)
 {
 DateTime performanceDate = performance.performanceObject[i].getDate();
 string format = " ddd d MMM yyyy";
 string performanceDateString = performanceDate.ToString(format);
 listBox1.Items.Add("Date: " + performanceDateString);
 string performanceTime = performance.performanceObject[i].getTime();
 listBox1.Items.Add("Time: " + performanceTime);
 double seatPrice = performance.performanceObject[i].getPrice();
 string seatPriceString = seatPrice.ToString("f2");
 listBox1.Items.Add("Seat price: £" + seatPriceString);
 l istBox1.Items.Add("");
 }
 }

Run the program. Select an event, and details of all previously entered performances for

that event should be displayed.

