
 Chapter 10: Theatre Bookings 159

10 Theatre Bookings

In this final program, we will bring together many of the programming techniques which you

have met earlier in the book, including interactive user interface design, file handling, and

the display of graphics images. The project is large and may take several days to complete.

However, much of the code is similar to work carried out previously in this book. You may

save time by cutting and pasting methods from previous programs you have written, then

making any necessary alterations.

Newbridge Theatre

You are asked to produce a seat booking program which could be used by staff working in

the box office of the Newbridge Theatre. Customers phone the box office to obtain

information about forthcoming events, then may book seats for a particular performance.

Requirements of the system:

 The program should display information and images of events, to help office staff in

answering customer enquiries. The dates and times of performances for a particular

event should be shown.

 When a performance is selected, a plan of the theatre will be displayed to indicate

available seats. The theatre plan is:

 As seats are selected, the total price of tickets will be displayed. The theatre has a

policy of charging the same price for all seats at a performance, although seat prices

may differ between performances.

 If the customer wishes to proceed with a booking, their name, address, e-mail and

telephone details will be required. For existing customers, these details can be

selected from a database. For new customers, the details must be entered into the

system.

 160 Programming with C#.NET

 The customer will confirm their booking by providing credit card details. (Note:

obtaining payment from the customer’s bank and delivering tickets to the customer

are outside the scope of the system which you are asked to produce.)

 Theatre staff should be able to review the bookings received and the total value of

ticket sales for any performance.

 Staff should be able to add new events and performances to the system.

Design

As for the College Courses program in chapter 8, we will separate the code into two

categories:

 A set of Windows Forms will be used for on-screen input by the user and for the

output of data using text or graphics as required.

 A set of Object Classes will be used to handle all database operations, including the

loading, saving and updating of records.

A good starting point for a complex project is to identify classes of objects for the data

model. We will use the following structure:

 An event may have a number of performances on different days or at different

times.

 Each performance will have a complete set of seats available in the theatre.

 A customer may make one or more bookings.

 Each booking will be for a particular performance, and may be for a number of

seats.

event performance seat

customer booking

 Chapter 10: Theatre Bookings 161

Begin the project by creating a ‘theatreBookings’ database

Set up a table for storing data for each of the object classes. Begin with an Event table:

Make the eventID field an auto-number by selecting ‘Identity Specification’ and setting the

‘(Is Identity)’ property to ‘True’.

When the table design is completed, click the 'Update' button to add the table to the

database.

 162 Programming with C#.NET

Add a Performance table. Set the performanceID field to be an auto-number.

Add a Seat table. A primary key does not need to be set, so delete the key from the first line

of the table by right-clicking on the 'key' icon:

 Chapter 10: Theatre Bookings 163

Add a Customer table, making the customerID field an auto-number:

We finally require a Booking table. Make the bookingID field an auto-number:

 164 Programming with C#.NET

Click the 'Refresh' icon in the Server Explorer window, then check that all the tables have

been created correctly:

Right-click on theatreBookings.mdf and delete the connection to the database.

We can now plan how the Windows forms of the project will be related. From the

specification it seems that we will need four program sections: to handle the input of new

event and performance details, to process a booking by a customer, to display customer

records for the theatre staff, and to display the seat bookings and ticket sales for each

performance.

Theatre Bookings

Events

Booking

Customers

Add

Event

Add

Performance

Display

Events

Display

Seat Plan

Customer

Details

Payment

View

Customer

Details

Ticket Sales

Display

Ticket

Sales

 Chapter 10: Theatre Bookings 165

Start a new Visual C# project. Select Windows Forms Application and give the name

theatreBookings.

Rename Form1 as DisplayEvents. Add a menuStrip component, and configure the menu

options as shown:

Add a Windows Form and give this the name ‘AddEvent’. Link the AddEvent form to the

menu system by adding code to the ‘Add event’ menu option:

 private void addEventToolStripMenuItem_Click(object sender, EventArgs e)
 {
 AddEvent frmAddEvent = new AddEvent();
 frmAddEvent.ShowDialog();
 }

 166 Programming with C#.NET

Add components to the AddEvent form. For the txtDescription text box, set the Multiline

property to True.

For each theatre event, it would be good to provide a picture image and a written

description of the event. Go to the Internet and find suitable images and text for some

events that the theatre might host:

West Side Story is set in the East 40s and West 50s

of the Upper West Side neighborhood in New

York City in the mid-1950s, an ethnic, blue-collar

neighborhood. The musical explores the rivalry

between the Jets and the Sharks, two teenage

street gangs of different ethnic backgrounds.

The members of the Sharks from Puerto Rico are

taunted by the Jets, a Polish-American working-

class group. Tony, one of the Jets, falls in love

with Maria, the sister of Bernardo, the leader of

the Sharks.

textBox

txtDescription

textBox

txtTitle

button

btnClose

button

btnStore

pictureBox

pictureBox1

button

btnLoad

 Chapter 10: Theatre Bookings 167

Add code for the Load and Close buttons on the AddEvent form. A variable called

imagename is also required:

 public partial class AddEvent : Form
 {
 string imagename;

 public AddEvent()
 {
 InitializeComponent();
 }

 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }

 private void btnLoad_Click(object sender, EventArgs e)
 {
 try
 {
 FileDialog fileDialog = new OpenFileDialog();
 fileDialog.Filter = "Image File (*.jpg;*.bmp;*.gif)|*.jpg;*.bmp;*.gif";

 if (fileDialog.ShowDialog() == DialogResult.OK)
 {
 imagename = fileDialog.FileName;
 Bitmap newimg = new Bitmap(imagename);
 pictureBox1.SizeMode = PictureBoxSizeMode.StretchImage;
 pictureBox1.Image = (Image)newimg;
 }
 fileDialog = null;
 }
 catch
 {
 MessageBox.Show("Error");
 }
 }
 }

Run the program. Select the ‘Add event’ menu option to open the AddEvent form. Click the

‘Load picture’ button, and check that a picture image can be selected and displayed.

 168 Programming with C#.NET

Create a class file called ‘theatreEvent’. (Note: It is not possible to create a class called

‘event’, as the word ‘event’ has a special meaning in the C# language.)

Open the theatreEvent class file and add the properties for a theatreEvent object. Since we
are using picture images, it is necessary to include a ‘using Drawing’ directive:

using System.Linq;
using System.Text;

using System.Drawing;

namespace theatreBookings
{
 class theatreEvent
 {
 private int eventID;
 private string title;
 private string description;
 private Image imageData;
 }
}

We will now add the series of methods required to move data values into or out of each
property field of the theatreEvent objects.

 private string description;
 private Image imageData;

 public void setEventID(int e)
 {
 eventID = e;
 }

 public int getEventID()
 {
 return eventID;
 }

 Chapter 10: Theatre Bookings 169

 public void setTitle(string t)
 {
 title = t;
 }

 public string getTitle()
 {
 return title;
 }

 public void setDescription(string d)
 {
 description = d;
 }

 public string getDescription()
 {
 return description;
 }

 public void setImage(Image im)
 {
 imageData = im;
 }

 public Image getImage()
 {
 return imageData;
 }
 }
}

We need to create a method to save theatreEvent records into the database. Before doing

that, a few more ‘using’ directives will be needed, and the database location must be

specified. You should also set up a variable to keep a count of the number of theatreEvent

objects in the system, and an array to link to these theatreEvent objects.

using System.Text;
using System.Drawing;

using System.IO;
using System.Data.SqlClient;
using System.Data;

namespace theatreBookings
{
 class theatreEvent
 {

 private static string databaseLocation ="C:\\C#\\theatreBookings.mdf;";
 public static int eventCount;
 public static theatreEvent[] eventObject = new theatreEvent[12];

 private int eventID;
 private string title;
 private string description;
 private Image imageData;

 170 Programming with C#.NET

 Notice that the variables ‘eventCount’ and ‘eventObject’ have been marked as ‘static’. This

means that they occur only once and are used by the whole class.

By contrast, the properties eventID, title, description and imageData are ‘dynamic’: a set

of these variables is created for each new object added whilst the program is running.

We will now add an AddEvent() method to the theatreEvent class. This will convert the

picture image into an array of binary data, then save it into a database record, along with

the event title and description. The same technique was used to store the Fast Food images

in chapter 9. Insert the new method below the list of theatreEvent properties.

 public static void AddEvent(string im, string t, string d)
 {
 FileStream fs;
 fs = new FileStream(im, FileMode.Open, FileAccess.Read);
 byte[] picbyte = new byte[fs.Length];
 fs.Read(picbyte, 0, System.Convert.ToInt32(fs.Length));
 fs.Close();

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename="+ databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 string query = "INSERT INTO Event(title,description,picture) "+
 "VALUES('" + t + "','" + d + "'," + " @pic)";
 SqlParameter picparameter = new SqlParameter();
 picparameter.SqlDbType = SqlDbType.Image;
 picparameter.ParameterName = "pic";
 picparameter.Value = picbyte;
 SqlCommand cmd = new SqlCommand(query, con);
 cmd.Parameters.Add(picparameter);
 cmd.ExecuteNonQuery();
 con.Close();
 }

 Chapter 10: Theatre Bookings 171

Return to the AddEvent form and double click the ‘Save event’ button. Include a line of

code in the button click method to call an AddRecord() method, then add this method:

 private void btnStore_Click(object sender, EventArgs e)
 {
 addRecord();
 }

 private void addRecord()
 {
 try
 {
 if (imagename != "")
 {
 theatreEvent.AddEvent(imagename, txtTitle.Text, txtDescription.Text);
 MessageBox.Show("Event Added");
 }
 }
 catch
 {
 MessageBox.Show("File error");
 }
 }

Notice how this method calls AddEvent() in the theatreEvent class to save the event. We

simply pass the necessary data to the AddEvent() method as a series of parameters.

 172 Programming with C#.NET

A problem might occur when entering titles or descriptions of events if apostrophe characters (‘) are

present in the text, for example:

 “The songs include 'Sherry', 'Walk Like A Man' and 'Big Girls Don't Cry'.”

The apostrophe is used as a special control character by the C# language, and can cause an error

when data is being uploaded to the database. Fortunately there is a simple solution. The computer

has an alternative symbol which looks similar to an apostrophe, but is not recognised as a C# control

character. This is located in the upper left hand corner of the keyboard.

Return to the addRecord() method in the AddEvent form, and insert lines of code to make the

replacements from the standard apostrophe to the alternative symbol:

 Replace("'", "`")

 private void addRecord()
 {
 try
 {

 txtTitle.Text = txtTitle.Text.Replace("'", "`");
 txtDescription.Text = txtDescription.Text.Replace("'", "`");

 if (imagename != "")
 {
 theatreEvent.AddEvent(imagename, txtTitle.Text, txtDescription.Text);
 MessageBox.Show("Event Added");
 }
 }
 catch
 {
 MessageBox.Show("File error");
 }
 }

standard apostrophe alternative symbol

 Chapter 10: Theatre Bookings 173

Add a series of event records and check that these are being stored correctly in the

database Event table:

We can now return to the DisplayEvents form and work on the task of displaying the event

text and pictures.

Add a panel to the DisplayEvents form and name this ‘pnlEvents’. Set the height of the

panel to 3,000 pixels.

Click once on the DisplayEvents form beyond the edge of the panel to select it, then set the

‘AutoScroll’ property to ‘True’. Run the program to check that a scrolling window has been

produced on the DisplayEvents form.

 174 Programming with C#.NET

We must now return to the theatreEvent class file to add a method to load the event

records from the database. Insert the loadEvents() method below the list of properties:

 private int eventID;
 private string title;
 private string description;
 private Image imageData;

 public static void loadEvents()
 {
 SqlDataAdapter dAdapt;
 DataSet dSet;

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename="+ databaseLocation+ "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 dAdapt = new SqlDataAdapter();
 dAdapt.SelectCommand = new SqlCommand("SELECT * FROM Event", con);
 dSet = new DataSet("dSet");
 dAdapt.Fill(dSet);
 con.Close();
 DataTable dTable;
 dTable = dSet.Tables[0];

 DataTable dataTable = dSet.Tables[0];
 eventCount = dataTable.Rows.Count;

 for (int i = 0; i < eventCount; i++)
 {
 eventObject[i] = new theatreEvent();
 DataRow dataRow = dataTable.Rows[i];
 string finalString = "pic" + Convert.ToString(i);
 FileStream FS1 = new FileStream(finalString + "jpg", FileMode.Create);
 byte[] blob = (byte[])dataRow[3];
 FS1.Write(blob, 0, blob.Length);
 FS1.Close();
 FS1 = null;

 eventObject[i].setImage(Image.FromFile(finalString + "jpg"));
 eventObject[i].setEventID((int)dataRow[0]);
 eventObject[i].setTitle(Convert.ToString(dataRow[1]));
 eventObject[i].setDescription(Convert.ToString(dataRow[2]));
 }
 }

This method accesses the database, then uses a loop to create an eventObject from each
event record in the database. The picture data is converted into .JPG image format so that
it can be easily displayed.

 Chapter 10: Theatre Bookings 175

Go to the DisplayEvents form and add code to the DisplayEvents() method. This calls the
loadEvents() method in the theatreEvent class, to load the data from the database and set
up an eventObject for each theatre event.

 public DisplayEvents()
 {
 InitializeComponent();

 theatreEvent.eventCount = 0;
 try
 {
 theatreEvent.loadEvents();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

Run the program and check that no error message is displayed. If all is well, we can now

display the events on the panel. Write a displayPictures() method, and call this from the

DisplayEvents() method.

 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }

 displayPictures();
 }

 private void displayPictures()
 {
 PictureBox[] pictureBox = new PictureBox[8];
 Label[] label = new Label[8];
 TextBox[] textBox = new TextBox[8];
 Button[] button = new Button[8];

 for (int i = 0; i < theatreEvent.eventCount; i++)
 {
 pictureBox[i] = new PictureBox();
 pictureBox[i].Image = theatreEvent.eventObject[i].getImage();
 pictureBox[i].Size = new System.Drawing.Size(240, 240);
 pictureBox[i].Location = new System.Drawing.Point(60, 60 + 300 * i);
 pictureBox[i].SizeMode = PictureBoxSizeMode.StretchImage;
 pnlEvents.Controls.Add(pictureBox[i]);
 pictureBox[i].Refresh();

 label[i] = new Label();
 label[i].Size = new System.Drawing.Size(200, 30);
 label[i].Text = theatreEvent.eventObject[i].getTitle();
 label[i].Font = new System.Drawing.Font("Microsoft Sans Serif", 14F,
 System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point,
 ((byte)(0)));
 label[i].Location = new System.Drawing.Point(320, 60 + 300 * i);
 pnlEvents.Controls.Add(label[i]);
 }
 }

 176 Programming with C#.NET

Run the program. The titles and images for your theatre events should be displayed in the

scrolling window.

Return to the displayPictures() method and add two more sections of code. These will

produce a textBox to display the description of the event, and a button which can be clicked

to go to the bookings screen.

 label[i].Location = new System.Drawing.Point(320, 60 + 300 * i);
 pnlEvents.Controls.Add(label[i]);

 textBox[i] = new TextBox();
 textBox[i].TabStop = false;
 textBox[i].BorderStyle = System.Windows.Forms.BorderStyle.None;
 textBox[i].Location = new System.Drawing.Point(320, 100 + 300 * i);
 textBox[i].Multiline = true;
 textBox[i].Size = new System.Drawing.Size(500, 200);
 textBox[i].Text = theatreEvent.eventObject[i].getDescription();
 textBox[i].ReadOnly = true;
 textBox[i].Font = new System.Drawing.Font("Microsoft Sans Serif", 10F,
 System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point,
 ((byte)(0)));
 pnlEvents.Controls.Add(textBox[i]);

 button[i] = new Button();
 button[i].Location = new System.Drawing.Point(700, 60 + 300 * i);
 button[i].Size = new System.Drawing.Size(112, 28);
 button[i].Text = "Book seats";
 String buttonName = "btn" + i;
 button[i].Name = buttonName;
 button[i].Click += new EventHandler(loadPlan);
 pnlEvents.Controls.Add(button[i]);

 }
 }

 Chapter 10: Theatre Bookings 177

 When the ‘Book seats’ button is clicked, this will call a loadPlan() method, to display a

seating plan of the theatre. For now, just create an empty loadPlan() method immediately

after the displayPictures() method. We will come back to complete this later.

 private void loadPlan(object sender, EventArgs e)
 {

 }

We can now run the program to check that the event text and ‘Book seats’ buttons are

displayed.

Before working on the theatre bookings, we must produce a form for entering the seat

prices, dates and times of performances.

Add a Windows Form to the project. Give this the name ‘AddPerformance’.

 178 Programming with C#.NET

Set up components on the form as shown:

Link the AddPerformance form to the menu system by double clicking the ‘Add

performance’ menu option on the DisplayEvents form, then add lines of code:

 private void addPreformanceToolStripMenuItem_Click(object sender, EventArgs e)

 {
 AddPerformance frmAddPerformance = new AddPerformance();
 frmAddPerformance.ShowDialog();
 }

dateTimePicker

dateTimePicker1

textBox

txtTime

textBox

txtPrice

button

btnClose

button

btnAdd

comboBox

combEvents

listBox

listBox1

 Chapter 10: Theatre Bookings 179

The first requirement for the AddPerformance form is to load a list of the theatre events
into the drop down combo box.

Event objects have already been created when the program first runs, so there is no need to
reload data from the database. We can simply use a loop to access the title from each
eventObject and add this to the comboBox list.

Write a loadEvents() method for the AddPerformance form. Call this from the
AddPerformance() method. Also add code to the ‘close’ button.

 public AddPerformance()
 {
 InitializeComponent();

 loadEvents();
 }

 private void loadEvents()
 {
 string eventTitle;
 combEvents.Items.Clear();
 for (int i = 0; i < theatreEvent.eventCount; i++)
 {
 eventTitle = theatreEvent.eventObject[i].getTitle();
 combEvents.Items.Add(eventTitle);
 }
 }

 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }

Run the program and check that the list of events is shown correctly in the comboBox list.

 180 Programming with C#.NET

When the user clicks the ‘add performance’ button, we want two things to happen:

 The eventID, performance date, time and ticket price should be saved into the

Performance table of the database.

 A set of seat records will be created for the performance, all initially set as ‘available

for booking’.

In preparation for these tasks, we will set up a class file called ‘performance’.

Add the properties for performance objects, and a set of methods for transfering data into

and out of the property fields.

 class performance
 {
 private int performanceID;
 private int eventID;
 private DateTime performanceDate;
 private string time;
 private double seatPrice;

 public void setPerformanceID(int pID)
 {
 performanceID = pID;
 }

 public int getPerformanceID()
 {
 return performanceID;
 }

 public void setEventID(int e)
 {
 eventID = e;
 }

 Chapter 10: Theatre Bookings 181

 public int getEventID()
 {
 return eventID;
 }

 public void setDate(DateTime d)
 {
 performanceDate = d;
 }

 public DateTime getDate()
 {
 return performanceDate;
 }

 public void setTime(string t)
 {
 time = t;
 }

 public string getTime()
 {
 return time;
 }

 public void setPrice(double p)
 {
 seatPrice = p;
 }

 public double getPrice()
 {
 return seatPrice;
 }

We will now create a method to save a performance record into the database. It will be
necessary to add ‘using SqlClient’ and ‘using Data’ directives, and to give the database
location.

using System.Linq;
using System.Text;

using System.Data.SqlClient;
using System.Data;

namespace theatreBookings
{
 class performance
 {
 private static string databaseLocation = "C:\\C#\\theatreBookings.mdf;";

 182 Programming with C#.NET

Write the AddPerformance() method. Remember that performanceID is an auto-number
generated by the computer. We will need to know this value, as it forms a property of the
seat objects which will be created for the performance. We can obtain the performanceID
for the record which has just been saved by using the ‘SELECT SCOPE_IDENTITY()’
command.

 private int performanceID;
 private int eventID;
 private DateTime performanceDate;
 private string time;
 private double seatPrice;

 public static void AddPerformance(int ID, DateTime d, string t, double p)
 {
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 SqlCommand cmPerformance = new SqlCommand();
 cmPerformance.Connection = con;
 cmPerformance.CommandType = CommandType.Text;
 cmPerformance.CommandText = "INSERT INTO Performance(eventID, performanceDate,"
 + "time, seatPrice) VALUES ('" + ID + "','" + d.ToString("MM/dd/yyyy") + "','"
 + t + "','" + p + "')";
 cmPerformance.ExecuteNonQuery();

 cmPerformance.CommandText = "SELECT SCOPE_IDENTITY()";
 int identity = Convert.ToInt32(cmPerformance.ExecuteScalar());
 con.Close();

 assignSeats(identity);
 }

Add the assignSeats() method to create the set of seat objects for the performance.

 public static void assignSeats(int performanceID)
 {
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 SqlCommand cmSeat = new SqlCommand();
 cmSeat.Connection = con;
 cmSeat.CommandType = CommandType.Text;
 for (int r = 1; r <= 11; r++)
 {
 char rowLetter = Convert.ToChar(64 + r);
 if (r > 8)
 rowLetter = Convert.ToChar(65 + r);
 for (int s = 1; s <= 20; s++)
 {
 cmSeat.CommandText = "INSERT INTO Seat(seatRow,seatNumber,"
 + "performanceID,available,bookingID) VALUES ('" + rowLetter + "','"
 + s + "','" + performanceID + "','" + "0" + "','" + "0" + "')";
 cmSeat.ExecuteNonQuery();
 }
 }
 con.Close();
 }

 Chapter 10: Theatre Bookings 183

This method creates a block of 11 rows of 20 seats. Some rows in the theatre have fewer

than 20 seats, but the additional records can just be ignored and will not be accessed by the

booking system.

Notice how the row number is converted to a letter using ASCII code: letter ‘A’ has ASCII

value 65, ‘B’ is 66, etc. One slight complication is that the theatre does not use a row letter

‘I’, going instead from row ‘H’ to row ‘J’. This is common practice, to avoid confusion

between the letter ‘I’ the number 1. We compensate for the missing letter by altering the

ASCII code calculation for row numbers above 8.

Return to the AddPerformance form and double click the ‘add performance’ button. Add

code to the button click method which will gather the necessary information for a new

performance, then send this to the AddPerformance() method of the performace class.

 private void btnAdd_Click(object sender, EventArgs e)
 {
 DateTime performanceDate = Convert.ToDateTime(dateTimePicker1.Value);
 string performanceTime = txtTime.Text;
 double seatPrice = Convert.ToDouble(txtPrice.Text);
 int i = combEvents.SelectedIndex;
 int eventID = theatreEvent.eventObject[i].getEventID();
 performance.AddPerformance(eventID, performanceDate, performanceTime,
 seatPrice);
 this.Close();
 }

Run the program and enter test data for performances of different events. When each

entry is complete, click the ‘add performance’ button.

 184 Programming with C#.NET

Exit from the program and go to the Server Explorer. Check that the performances you have

entered are stored correctly in the Performance table. Check that the eventID corresponds

with the correct theatre event.

Go now to the Seat table. A set of 11 rows (A-L) of 20 seats should have been created for

each performance. The ‘available’ field of each seat record will be set to 0, indicating that

the seat has not yet been booked.

 Chapter 10: Theatre Bookings 185

One additional feature which we will include on the AddPerformance form is a list of the

performances which have already been entered for each event. This information will be

displayed in the listBox.

Begin by going to the performance class file and adding a loadPerformances() method.

This takes as a parameter the eventID of the required theatre event, then searches the

performance table in the database for any performances of this event.

When performance records have been found, these are used to create a set of performance

objects.

We must also add variables to record the number of performance objects created, and an

array to hold these objects.

 private int performanceID;
 private int eventID;
 private DateTime performanceDate;
 private string time;
 private double seatPrice;

 public static int performanceCount;
 public static performance[] performanceObject = new performance[12];

 public static void loadPerformances(int e)
 {
 performanceCount = 0;
 DataSet dsPerformances = new DataSet();

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 SqlCommand cmPerformances = new SqlCommand();
 cmPerformances.Connection = con;
 cmPerformances.CommandType = CommandType.Text;
 cmPerformances.CommandText = "SELECT * FROM Performance WHERE eventID='"
 + e + "'";
 SqlDataAdapter daPerformances = new SqlDataAdapter(cmPerformances);
 daPerformances.Fill(dsPerformances);
 con.Close();

 performanceCount = dsPerformances.Tables[0].Rows.Count;
 for (int i = 0; i < performanceCount; i++)
 {
 performanceObject[i] = new performance();
 DataRow dataRow = dsPerformances.Tables[0].Rows[i];
 performanceObject[i].setPerformanceID((int)dataRow[0]);
 performanceObject[i].setEventID((int)dataRow[1]);
 performanceObject[i].setDate(Convert.ToDateTime(dataRow[2]));
 performanceObject[i].setTime(Convert.ToString(dataRow[3]));
 performanceObject[i].setPrice(Convert.ToDouble(dataRow[4]));
 }
 }

 186 Programming with C#.NET

Return to the AddPerformance form. Double click the events comboBox to create an

indexchanged() method. This will operate whenever the user selects a different option

from the drop down list.

Add code to the method. This calls the loadPerformances() method in the performance

class file, using eventID to specify which theatre event has been selected. Objects are

created for all performances of the required event. We then use a loop to access each

performance object and display the information in the listBox.

 private void combEvents_SelectedIndexChanged(object sender, EventArgs e)
 {
 listBox1.Items.Clear();
 int i=combEvents.SelectedIndex;
 int eventID = theatreEvent.eventObject[i].getEventID();
 try
 {
 performance.loadPerformances(eventID);
 }
 catch
 {
 MessageBox.Show("File error");
 }
 for (i = 0; i < performance.performanceCount; i++)
 {
 DateTime performanceDate = performance.performanceObject[i].getDate();
 string format = " ddd d MMM yyyy";
 string performanceDateString = performanceDate.ToString(format);
 listBox1.Items.Add("Date: " + performanceDateString);
 string performanceTime = performance.performanceObject[i].getTime();
 listBox1.Items.Add("Time: " + performanceTime);
 double seatPrice = performance.performanceObject[i].getPrice();
 string seatPriceString = seatPrice.ToString("f2");
 listBox1.Items.Add("Seat price: £" + seatPriceString);
 listBox1.Items.Add("");
 }
 }

Run the program. Select an event, and details of all previously entered performances for

that event should be displayed.

 Chapter 10: Theatre Bookings 187

We are now ready to start work on the theatre plan screen which will allow the user to

select the seats for a booking.

Set up a new Windows Form with the name ‘TheatrePlan’. Return to the DisplayEvents

form and add code to the empty loadPlan() method which you created earlier on page 177.

 private void loadPlan(object sender, EventArgs e)
 {
 Button clickedButton = (Button)sender;
 string s = clickedButton.Name;
 int i = Convert.ToInt16(s.Substring(3, 1));
 TheatrePlan frmTheatrePlan = new TheatrePlan();
 frmTheatrePlan.showTheatre(i);
 frmTheatrePlan.ShowDialog();
 }

Go to the TheatrePlan form and add an empty showTheatre() method. This will bring in a

parameter ‘i’ to indicate which theatre event had been selected from the scrolling list on the

DisplayEvents page.

 public TheatrePlan()
 {
 InitializeComponent();
 }

 public void showTheatre(int i)
 {

 }

Run the program. Click one of the ‘Book seats’ buttons and check that the TheatrePlan
form opens correctly.

 188 Programming with C#.NET

Set up components on the TheatrePlan form as show below:

Add code to the ‘exit’ button:

 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }

comboBox

combPerformance

Label – text property not specified yet

lblEvent

panel

pnlTheatre

listBox

listBox1

button

btnClear

Label – text property set to ‘0’

lblPrice

textBox

txtTotalCost

button

btnBook

button

btnClose

 Chapter 10: Theatre Bookings 189

The first requirement of the booking screen is to display the title of the selected theatre
event, and provide a drop down list of the performance dates and times in the comboBox.
Add code to the showTheatre() method to do this. Notice how this reuses the
loadPerformances() method which we wrote earlier in the performance class. Add a
definition for the eventTitle variable above the method heading.

 string eventTitle;

 public void showTheatre(int i)
 {
 eventTitle = theatreEvent.eventObject[i].getTitle();
 lblEvent.Text = eventTitle;

 int eventID = theatreEvent.eventObject[i].getEventID();
 performance.loadPerformances(eventID);

 combPerformance.Items.Clear();
 for (int p = 0; p < performance.performanceCount; p++)
 {
 DateTime performanceDate = performance.performanceObject[p].getDate();
 string format = " ddd d MMM yyyy";
 string performanceDateString = performanceDate.ToString(format);
 string performanceTime = performance.performanceObject[p].getTime();
 combPerformance.Items.Add(performanceDateString + " at "
 + performanceTime);
 }
 }

Run the program. Select an event and check that the title and performance dates/times are

displayed correctly.

We can now start to construct the seating plan diagram for the theatre. It is first necessary

to make a small graphics image to represent a theatre seat on the plan. This should be

about 20 pixels square, and can be saved in .PNG format with the name ‘seat1.png’

Go to the SolutionExplorer window and right click on the theatreBookings program icon.

Load the seat image into the C# project by selecting ‘Add / Existing item’, then locating the

seat1.png graphics file in the file selection window.

 190 Programming with C#.NET

We will build up the theatre plan from buttons displaying the seat image, using a similar technique

to the Solitaire board display in chapter 4. Add an array at the start of the TheatrePlan form to hold

these buttons.

 public partial class TheatrePlan : Form
 {
 Button[,] btnSeat = new Button[22, 12];

 public TheatrePlan()
 {
 InitializeComponent();
 }

You may recall from the program specification that the theatre has quite a complicated arrangement

of seats:

We will construct this plan in several stages. The first will be to display the correct number of seats

in each row. Create a drawPlan() method in the TheatrePlan form.

 private void drawPlan()
 {
 int seatMax;
 for (int j = 1; j <= 11; j++)
 {
 seatMax = 20;
 if (j == 1) seatMax = 14;
 if (j == 2) seatMax = 16;
 if (j == 3) seatMax = 17;
 if (j == 4) seatMax = 19;
 if (j >= 7 && j <= 9) seatMax = 19;
 if (j == 11) seatMax = 19;
 for (int i = 1; i <= seatMax; i++)
 {
 btnSeat[i, j] = new Button();
 btnSeat[i, j].Width = 28;
 btnSeat[i, j].Height = 28;
 btnSeat[i, j].Left = (28 * i);
 btnSeat[i, j].Top = (28 * j);
 btnSeat[i, j].Image = Image.FromFile("../../seat1.png");
 pnlTheatre.Controls.Add(btnSeat[i, j]);
 }
 }
 }

 Chapter 10: Theatre Bookings 191

This method uses an outer loop to repeat for each of the 11 rows of seats, and an inner loop to

repeat for the seats along each row. Before running the inner loop, the maximum number of seats is

specified according to the theatre plan – this may vary between 14 and 20, depending on the row.

The inner loop then creates button objects displaying the seat image.

Double click the comboBox component, and add a line of code to call the drawPlan() method when

a performance date is selected.

 private void combPerformance_SelectedIndexChanged(object sender, EventArgs e)
 {
 drawPlan();
 }

Run the program. Select an event and click the ‘Book seats’ button, then choose a performance

date/time from the comboBox on the TheatrePlan form. The array of seats should be displayed.

Check that the correct number of seats are present in each row.

We are making progress, but you will notice from the seating plan that rows start at

different distances from the left wall of the theatre. We must allow for this if our seating

plan is to be realistic.

We can allocate a variable called ‘offset’ which records the number of seat positions by

which each row is indented:

offset = 4

offset = 3

offset = 2

offset = 1

offset = 0

offset = 0

 192 Programming with C#.NET

Return to the drawPlan() method. Add the offset variable and the code to set the number
of offset positions for each row of seats. Change the left positions of the buttons to allow
for the offsets.

 private void drawPlan()
 {
 int offset;

 int seatMax;

 for (int j = 1; j <= 11; j++)
 {
 seatMax = 20;
 if (j == 1) seatMax = 14;
 if (j == 2) seatMax = 16;
 if (j == 3) seatMax = 17;
 if (j == 4) seatMax = 19;
 if (j >= 7 && j <= 9) seatMax = 19;
 if (j == 11) seatMax = 19;

 for (int i = 1; i <= seatMax; i++)
 {
 offset = 0;
 if (j == 1) offset = 4;
 if (j == 2) offset = 3;
 if (j == 3) offset = 2;
 if (j == 4) offset = 1;
 if (j >= 7 && j <= 9) offset = 1;

 btnSeat[i, j] = new Button();
 btnSeat[i, j].Width = 28;
 btnSeat[i, j].Height = 28;

 btnSeat[i, j].Left = ((28 * i) + (28 * offset));

 btnSeat[i, j].Top = (28 * j);

Run the program and check that the rows are now indented in the correct pattern.

change this line

 Chapter 10: Theatre Bookings 193

The next slight complication is that the theatre has an aisle between the blocks of seats. On

the plan, this can be used to display the row letters.

We will need an array to hold the label which display the row letters. Add this at the start of

TheatrePlan.

 public partial class TheatrePlan : Form
 {
 Button[,] btnSeat = new Button[22, 12];

 Label[] label = new Label[12];

 public TheatrePlan()
 {
 InitializeComponent();
 }

Add a line of code to the drawPlan() method which will move all seat positions to the right

by 28 pixels if they are beyond the position of the aisle. This will create the gap between

the seat blocks. We then add code to place labels in this gap to show the row letters.

Notice how the row letters are generated from the row numbers using ASCII values, and

how the letter is incremented beyond row 8 to allow for the missing letter ‘I’.

 btnSeat[i, j] = new Button();
 btnSeat[i, j].Width = 28;
 btnSeat[i, j].Height = 28;
 btnSeat[i, j].Left = ((28 * i) + (28 * offset));

 if ((i + offset) > 15)
 btnSeat[i, j].Left += 28;

 btnSeat[i, j].Top = (28 * j);
 btnSeat[i, j].Image = Image.FromFile("../../seat1.png");
 pnlTheatre.Controls.Add(btnSeat[i, j]);
 }

 label[j] = new Label();
 label[j].Size = new System.Drawing.Size(24, 30);
 char c = Convert.ToChar(64 + j);
 if (j > 8)
 c = Convert.ToChar(65 + j);
 label[j].Text = Convert.ToString(c);
 label[j].Font = new System.Drawing.Font("Microsoft Sans Serif",
 10F, System.Drawing.FontStyle.Regular,
 System.Drawing.GraphicsUnit.Point, ((byte)(0)));
 label[j].Location = new System.Drawing.Point(455, 4 + 28 * j);
 pnlTheatre.Controls.Add(label[j]);
 }
 }

 194 Programming with C#.NET

Run the program and select an event and performance. The theatre plan should now be

displayed with an aisle and row letters.

A further small feature that you might like to impliment is a toolTip message box. This is a

small box which appears when the user hovers the mouse over a component. We can set

this up to display the seat row and number:

Return to the drawPlan() method and add code to link a toolTip message to each seat

button. We again make use of ASCII codes in converting the row number to the

corresponding row letter.

 btnSeat[i, j].Image = Image.FromFile("../../seat1.png");
 pnlTheatre.Controls.Add(btnSeat[i, j]);

 int rowNumber = j;
 if (j > 8)
 rowNumber++;
 string tooltipText = Convert.ToChar(rowNumber + 64).ToString()
 + (i).ToString();
 ToolTip buttonToolTip = new ToolTip();
 buttonToolTip.SetToolTip(btnSeat[i, j], tooltipText);
 }
 label[j] = new Label();
 label[j].Size = new System.Drawing.Size(24, 30);
 char c = Convert.ToChar(64 + j);

 Chapter 10: Theatre Bookings 195

Run the program to check that the toolTip messages are displayed correctly.

We can now turn our attention to displaying the seat bookings which have been made for
performances. To provide test data, go to the Server Explorer, connect the database and open
the Seat table. Locate the set of seats for a performance and set some of the seats in row A as
booked. This is done by changing the value of the ‘available’ field from 0 to 1. Make a note of
the event and performance to which these seats are allocated. When you have done this, close
the table window and delete the connection to the database.

It will be necessary to create a second version of the seat image, this time in a colour such as
red, to represent a booked seat. Call this ‘seat2.png’ and load it into the project using the ‘Add /
Existing item’ option:

 seat1.png seat2.png

Before displaying seat bookings, we must create a seat object class to handle the data. Select
‘Add / New item’ and create a class file called ‘seat’.

 196 Programming with C#.NET

As with previous classes, insert the property fields for seat objects and the methods for

transfering data into and out from these properties.

 class seat
 {
 private char seatRow;
 private int seatNumber;
 private int performanceID;
 private int available;
 private int bookingID;

 public void setSeatRow(char r)
 {
 seatRow = r;
 }

 public char getSeatRow()
 {
 return seatRow;
 }

 public void setSeatNumber(int s)
 {
 seatNumber = s;
 }

 public int getSeatNumber()
 {
 return seatNumber;
 }

 public void setPerformanceID(int p)
 {
 performanceID = p;
 }

 public int getPerformanceID()
 {
 return performanceID;
 }

 public void setAvailable(int a)
 {
 available = a;
 }

 public int getAvailable()
 {
 return available;
 }

 public void setBookingID(int b)
 {
 bookingID = b;
 }

 public int getBookingID()
 {
 return bookingID;
 }
 }

 Chapter 10: Theatre Bookings 197

We will now produce a loadSeats() method which uses a parameter ‘p’ to specify the

performanceID of the performance for which the seat data is required. The set of seat

records is loaded from the database table, then used to create a set of seat objects.

It will be necessary to add ‘using SqlClient’ and ‘using Data’ directives to the start of the

seat class file, set up a variable seatCount to record the number of seat objects created, and

to declare an array to link to the seat objects.

using System.Linq;
using System.Text;

using System.Data.SqlClient;
using System.Data;

namespace theatreBookings
{
 class seat
 {
 private char seatRow;
 private int seatNumber;
 private int performanceID;
 private int available;
 private int bookingID;

 private static string databaseLocation="C:\\C#\\theatreBookings.mdf;";

 public static int seatCount;
 public static seat[] seatObject = new seat[240];

 public static void loadSeats(int p)
 {
 seatCount = 0;
 DataSet dsSeats = new DataSet();
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 SqlCommand cmSeats = new SqlCommand();
 cmSeats.Connection = con;
 cmSeats.CommandType = CommandType.Text;
 cmSeats.CommandText = "SELECT * FROM Seat WHERE performanceID='"
 + p + "'";
 SqlDataAdapter daSeats = new SqlDataAdapter(cmSeats);
 daSeats.Fill(dsSeats);
 con.Close();

 seatCount = dsSeats.Tables[0].Rows.Count;
 for (int i = 0; i < seatCount; i++)
 {
 seatObject[i] = new seat();
 DataRow dataRow = dsSeats.Tables[0].Rows[i];
 seatObject[i].setSeatRow(Convert.ToChar(dataRow[0]));
 seatObject[i].setSeatNumber((int)dataRow[1]);
 seatObject[i].setPerformanceID((int)dataRow[2]);
 seatObject[i].setAvailable((int)dataRow[3]);
 seatObject[i].setBookingID((int)dataRow[4]);
 }
 }

 198 Programming with C#.NET

Return to the TheatrePlan form.

It will be convenient to use a two dimensional integer array, similar to the array in the
Solitaire game, to keep track of the status of each seat as available or booked. Set up the
seatStatus array at the start of TheatrePlan.

 public partial class TheatrePlan : Form
 {
 Button[,] btnSeat = new Button[22, 12];
 Label[] label = new Label[12];

 int[,] seatStatus = new int[21, 12];

Double click the comboBox to go to the IndexChanged() method. Add code which carries
out several activities:

 The performanceID is first obtained from the selected performance date/time in the
comboBox.

 The loadSeats() method in the seat class is called, which retrieves data from the
database table and creates a set of seat objects for the required performance.

 A loop accesses each of the seat objects. The row letter is converted to a row
number by means of its ASCII code.

 The value of the ‘available’ property is stored in the seatStatus array using the seat
and row numbers as the array indices ‘s’ and ‘r’. The value of ‘available’ will be 0 for
an empty seat, and 1 for a booked seat.

 Existing seat buttons are removed from the panel, ready to redisplay the plan.

 Finally, the ticket price for the performance is displayed in the lblPrice label.

 private void combPerformance_SelectedIndexChanged(object sender, EventArgs e)
 {
 int p = combPerformance.SelectedIndex;
 int performanceID = performance.performanceObject[p].getPerformanceID();
 seat.loadSeats(performanceID);

 for (int i = 0; i < seat.seatCount; i++)
 {
 char c = seat.seatObject[i].getSeatRow();
 int r = ((int)c) - 64;
 if (r > 8)
 r--;
 int s = seat.seatObject[i].getSeatNumber();
 int available = seat.seatObject[i].getAvailable();
 seatStatus[s, r] = available;
 }

 int totalButtons = pnlTheatre.Controls.Count;
 for (int i = 0; i < totalButtons; i++)
 {
 pnlTheatre.Controls.RemoveAt(0);
 }
 lblPrice.Text = performance.performanceObject[p].getPrice().ToString("f2");

 drawPlan();
 }

 Chapter 10: Theatre Bookings 199

One change is needed to the drawPlan() method to display the coloured seat2.png image for
booked seats, where seatStatus has a value of 1. Add the extra lines of code:

 btnSeat[i, j] = new Button();
 btnSeat[i, j].Width = 28;
 btnSeat[i, j].Height = 28;
 btnSeat[i, j].Left = ((28 * i) + (28 * offset));
 if ((i + offset) > 15)
 btnSeat[i, j].Left += 28;
 btnSeat[i, j].Top = (28 * j);
 btnSeat[i, j].Image = Image.FromFile("../../seat1.png");

 if (seatStatus[i, j] == 1)
 btnSeat[i, j].Image = Image.FromFile("../../seat2.png");

 pnlTheatre.Controls.Add(btnSeat[i, j]);

Run the program. Select the event and performance for which you altered the ‘available’
properties of some seats (page 195). The seats which you set as ‘booked’ should appear with
colour coding on the seat plan.

We can now move on to the task of selecting and booking seats. As the user selects seats by
clicking on the theatre plan, it will be convenient for these seats to be appear in another
colour, for example: green. Make a third seat image, called ‘seat3.png’ in this additional colour
and load it into the project.

 seat1.png seat2.png seat3.png

 200 Programming with C#.NET

Return to the drawPlan() method and add code which will do two things:

 Each button is allocated a name, made up from the letters ‘btn’, followed by the row
number and the seat number. To avoid ambiguity, a space is added before a single
digit row or seat number.

 A button click procedure called seat_Click() is linked to each button.

 btnSeat[i, j].Image = Image.FromFile("../../seat1.png");
 if (seatStatus[i, j] == 1)
 btnSeat[i, j].Image = Image.FromFile("../../seat2.png");

 String buttonName = "btn";
 if (j <= 9)
 buttonName += " ";
 buttonName += j;
 if (i <= 9)
 buttonName += " ";
 buttonName += i;

 btnSeat[i, j].Name = buttonName;
 btnSeat[i, j].Click += new EventHandler(seat_Click);

 pnlTheatre.Controls.Add(btnSeat[i, j]);

Add the seatClick() method immediately after drawPlan(). This will process the button click
by carrying out a series of actions:

 The button name is broken down to obtain the row and seat number.

 The program checks that this seat does not have a seatStatus value of 1, which would
indicate that it was already booked.

 If the seat is currently available, a seatStatus value of 2 is allocated, and the image is
changed to seat3.png.

 It the seat is already selected, then the selection is cancelled by re-setting seatStatus
to 0 and changing the image back to seat1.png.

 private void seat_Click(object sender, EventArgs e)
 {
 Button clickedButton = (Button)sender;

 string s = clickedButton.Name;
 int j = Convert.ToInt16(s.Substring(3, 2));
 int i = Convert.ToInt16(s.Substring(5, 2));

 if (seatStatus[i, j] != 1)
 {
 if (seatStatus[i, j] == 0)
 {
 seatStatus[i, j] = 2;
 btnSeat[i, j].Image = Image.FromFile("../../seat3.png");
 }
 else
 {
 seatStatus[i, j] = 0;
 btnSeat[i, j].Image = Image.FromFile("../../seat1.png");
 }
 }
 }

 Chapter 10: Theatre Bookings 201

Run the program and select your test event/performance. Check that seats can be selected
by clicking on the seat plan, and that seats can be deselected by clicking a second time.

We can display details of the seats selected in the listBox at the bottom of the form. Add a
listSelectedSeats() method to the TheatrePlan page below the seatClick() method.

 private void listSelectedSeats()
 {
 try
 {
 int p = combPerformance.SelectedIndex;
 double seatPrice = performance.performanceObject[p].getPrice();
 totalCost = 0;
 listBox1.Items.Clear();
 for (int j = 1; j <= 11; j++)
 {
 for (int i = 1; i <= 20; i++)
 {
 if (seatStatus[i, j] == 2)
 {
 char c = Convert.ToChar(64 + j);
 if (j > 8)
 c = Convert.ToChar(65 + j);
 listBox1.Items.Add("Row " + c + " Seat " + i);
 totalCost += seatPrice;
 }
 }
 }
 txtTotalCost.Text = totalCost.ToString("f2");
 }
 catch
 {
 MessageBox.Show("A performance must be selected");
 }
 }

This method uses two loops to check the seatStatus array value for each seat. If a value of 2
is found, indicating that the user has selected that seat, then the seat row letter and seat
number are added to the list box. We also take the opportunity to calculate the total cost of
the seats booked, using the seat price loaded earlier from the performance object.

 202 Programming with C#.NET

Add a line of code at the end of the seatClick() method to call listSelectedSeats(). We also
need to add the totalCost variable.

 if (seatStatus[i, j] == 0)
 {
 seatStatus[i, j] = 2;
 btnSeat[i, j].Image = Image.FromFile("../../seat3.png");
 }
 else
 {
 seatStatus[i, j] = 0;
 btnSeat[i, j].Image = Image.FromFile("../../seat1.png");
 }

 listSelectedSeats();
 }
 }

 double totalCost;

 private void listSelectedSeats()
 {
 try
 {
 int p = combPerformance.SelectedIndex;
 double seatPrice = performance.performanceObject[p].getPrice();
 totalCost = 0;
 listBox1.Items.Clear();

Run the program. Check that seats selected are added to the listBox, and that the total cost
of the selected seats is calculated correctly.

 Chapter 10: Theatre Bookings 203

A final feature to complete is the ‘clear selection’ button, which will reset all selected seats
to the ‘available’ state. Double click the button and add code to the button_Click method.
This uses two loops to check the seatStatus array. If a value of 2 is found, indicating that
the seat is currently selected, then the array value is reset to 0 and the image on the
corresponding seat button is changed back to ‘seat1.png’.

 private void btnClear_Click(object sender, EventArgs e)
 {
 listBox1.Items.Clear();
 for (int j = 1; j <= 11; j++)
 {
 for (int i = 1; i <= 20; i++)
 {
 if (seatStatus[i, j] == 2)
 {
 seatStatus[i, j] = 0;
 btnSeat[i, j].Image = Image.FromFile("../../seat1.png");
 }
 }
 }
 txtTotalCost.Clear();
 }

Run the program and check that seat selections can be cancelled.

Once the required seats have been selected, the user will move to the next form to input
contact details for the customer. We will develop this section next, but first we must create
a customer object class. Go to the Solution Explorer window and add a new class file with
the name ‘customer’.

Add the properties for the customer class and the methods for transfering data into and out
of customer objects, as shown below:

 204 Programming with C#.NET

 class customer
 {
 private int customerID;
 private string surname;
 private string forename;
 private string title;
 private string address1;
 private string address2;
 private string town;
 private string postcode;
 private string email;
 private string phone;

 public void setCustomerID(int c)
 {
 customerID = c;
 }
 public int getCustomerID()
 {
 return customerID;
 }
 public void setSurname(string s)
 {
 surname = s;
 }
 public string getSurname()
 {
 return surname;
 }
 public void setForename(string f)
 {
 forename = f;
 }
 public string getForename()
 {
 return forename;
 }
 public void setTitle(string t)
 {
 title = t;
 }
 public string getTitle()
 {
 return title;
 }
 public void setAddress1(string a1)
 {
 address1 = a1;
 }
 public string getAddress1()
 {
 return address1;
 }
 public void setAddress2(string a2)
 {
 address2 = a2;
 }
 public string getAddress2()
 {
 return address2;
 }

 Chapter 10: Theatre Bookings 205

 public void setTown(string to)
 {
 town = to;
 }
 public string getTown()
 {
 return town;
 }
 public void setPostcode(string pc)
 {
 postcode = pc;
 }
 public string getPostcode()
 {
 return postcode;
 }
 public void setEmail(string em)
 {
 email = em;
 }
 public string getEmail()
 {
 return email;
 }
 public void setPhone(string ph)
 {
 phone = ph;
 }
 public string getPhone()
 {
 return phone;
 }

Return to the Solution Explorer window and add a Windows Form with the name
‘CustomerDetails’.

 206 Programming with C#.NET

Add components to the Customer Details form:

We will need to carry forward various data from the TheatrePlan form to the
CustomerDetails form, ready to record the booking in the database: the title of the theatre
event, the performanceID, the seats selected and the total cost of the tickets. Go to the
CustomerDetails form and add a getBooking() method and variables.

 public partial class CustomerDetails : Form
 {
 int f_performanceID;
 double f_totalCost;
 int[,] f_seatStatus;
 string f_eventTitle;

 public CustomerDetails()
 {
 InitializeComponent();
 }

 public void getBooking(int performanceID, double totalCost,
 int[,] seatStatus, string eventTitle)
 {
 f_performanceID = performanceID;
 f_totalCost = totalCost;
 f_seatStatus = seatStatus;
 f_eventTitle = eventTitle;
 }

comboBox

combCustomers

button

btnClear

comboBox combTitle

textBoxes:

txtForename

txtSurname

txtAddress1

txtAddress2

txtTown

txtPostcode

txtEmail

txtPhone

button

btnContinue

button

btnClose

 Chapter 10: Theatre Bookings 207

Add code to the ‘exit’ button.

 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }

Return to the TheatrePlan form and double click the ‘make booking’ button. Add code to
the button_Click method which will open the CustomerDetails form and call the
getBooking() method, ready to transfer the required data.

 private void btnBook_Click(object sender, EventArgs e)
 {
 CustomerDetails frmCustomerDetails = new CustomerDetails();
 int p = combPerformance.SelectedIndex;
 int performanceID = performance.performanceObject[p].getPerformanceID();
 frmCustomerDetails.getBooking(performanceID, totalCost,
 seatStatus, eventTitle);
 frmCustomerDetails.ShowDialog();
 this.Close();
 }

In the case of a new customer, the user will enter their name, address, e-mail and phone
number. This information will then be saved into the customer table of the database. We
will now write the method to save this record.

Go to the customer class file. Add ‘using SqlClient’ and ‘using Data’ directives, and insert
the database location.

using System.Linq;
using System.Text;

using System.Data.SqlClient;
using System.Data;

namespace theatreBookings
{
 class customer
 {
 private static string databaseLocation = "C:\\C#\\theatreBookings.mdf;";

 private int customerID;
 private string surname;
 private string forename;
 private string title;

 208 Programming with C#.NET

Add the saveCustomer() method to the customer class file. This takes as parameters the
fields of the customer record, then uses the SQL INSERT command to save the record into
the customer table of the database.

We will need to know the customerID value for the new record, so that this can be linked to
the particular seat booking which is made. The computer will allocate a customerID
automatically as an auto-number field. We can find the allocated value using the SELECT
SCOPE_IDENTITY() command and return it from the saveCustomer() method.

 public static int saveCustomer(string forename, string surname,string title,
 string address1, string address2,string town, string postcode, string email,
 string phone)
 {
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 SqlCommand cmCustomer = new SqlCommand();
 cmCustomer.Connection = con;
 cmCustomer.CommandType = CommandType.Text;
 cmCustomer.CommandText = "INSERT INTO Customer(forename,surname, title,"
 +"address1, address2, town, postcode, email, phone)"
 + "VALUES ('" + forename + "','" + surname + "','" + title + "','"
 + address1 + "','" + address2 + "','" + town + "','" + postcode + "','"
 + email + "','" + phone + "')";
 cmCustomer.ExecuteNonQuery();

 cmCustomer.CommandText = "SELECT SCOPE_IDENTITY()";
 int identity = Convert.ToInt32(cmCustomer.ExecuteScalar());
 con.Close();
 return identity;
 }

Return to the CustomerDetails form. Select the comboBox for customer title. Go to the
Properties window and select ‘Items’ to open the String Collection Editor window. Enter a
choice of titles: Mr, Ms, Miss, Mrs, Dr…

 Chapter 10: Theatre Bookings 209

Double click the ‘continue to payment’ button and add code to the button_Click method.
Also add a customerID variable immediately before the method.

The button_Click method first checks that data has been entered in the required fields:
surname, forename, address1 and postcode. If data is present, then all data fields are
passed as parameters to the saveCustomer() method in the customer class, which saves the
record to the database table.

 int customerID;

 private void btnContinue_Click(object sender, EventArgs e)
 {
 customerID = 0;
 if (txtSurname.Text.Length > 0 && txtForename.Text.Length > 0 &&
 txtAddress1.Text.Length > 0 && txtPostcode.Text.Length > 0)
 {
 customerID = customer.saveCustomer(txtForename.Text, txtSurname.Text,
 combTitle.Text, txtAddress1.Text, txtAddress2.Text, txtTown.Text,
 txtPostcode.Text, txtEmail.Text, txtPhone.Text);
 }
 else
 {
 MessageBox.Show(
 "Missing customer information - name, address, postcode are required");
 }
 }

Run the program. Select an event and performance, then click the ‘make booking’ button
to open the CustomerDetails form.

Enter test data for a customer. Click the ‘continue to payment’ button, then 'exit'.

 210 Programming with C#.NET

Enter several more customers in a similar way, then close the program windows. Go to the
Server Explorer window and link to the theatreBookings.mdf database. Open the customer
table and check that your test records have been saved, then delete the data connection.

Apart from entering new customers, we also want to be able to select details of existing
customers from the database. Go to the customer class and add a loadCustomers()
method, a customerCount variable and an array to link to customer objects.

The loadCustomers() method will load all customer records from the database. We ask for
these to be sorted alphabetically by surname with the ‘ORDER BY…’ command in SQL.
A customerObject is then created from each of the records.

 private string email;
 private string phone;
 private static string databaseLocation = "C:\\C#\\theatreBookings.mdf;";

 public static int customerCount;
 public static customer[] customerObject = new customer[12];

 public static void loadCustomers()
 {
 customerCount = 0;
 DataSet dsCustomers = new DataSet();
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 SqlCommand cmCustomers = new SqlCommand();
 cmCustomers.Connection = con;
 cmCustomers.CommandType = CommandType.Text;
 cmCustomers.CommandText = "SELECT * FROM Customer ORDER BY surname ASC";
 SqlDataAdapter daCustomers = new SqlDataAdapter(cmCustomers);
 daCustomers.Fill(dsCustomers);
 con.Close();

 customerCount = dsCustomers.Tables[0].Rows.Count;
 for (int i = 0; i < customerCount; i++)
 {
 customerObject[i] = new customer();
 DataRow dataRow = dsCustomers.Tables[0].Rows[i];
 customerObject[i].setCustomerID((int)dataRow[0]);
 customerObject[i].setForename(Convert.ToString(dataRow[1]));
 customerObject[i].setSurname(Convert.ToString(dataRow[2]));
 customerObject[i].setTitle(Convert.ToString(dataRow[3]));
 customerObject[i].setAddress1(Convert.ToString(dataRow[4]));
 customerObject[i].setAddress2(Convert.ToString(dataRow[5]));
 customerObject[i].setTown(Convert.ToString(dataRow[6]));
 customerObject[i].setPostcode(Convert.ToString(dataRow[7]));
 customerObject[i].setEmail(Convert.ToString(dataRow[8]));
 customerObject[i].setPhone(Convert.ToString(dataRow[9]));
 }
 }

 Chapter 10: Theatre Bookings 211

Return to the CustomerDetails form and add a loadCustomers() method. This will call the
method in the customer class which loads records from the database and creates a set of
customerObjects. A loop then accesses each object and adds the customer name to the
comboBox list.

Call loadCustomers() from the CustomerDetails() method.

 public CustomerDetails()
 {
 InitializeComponent();

 loadCustomers();
 }

 private void loadCustomers()
 {
 customer.loadCustomers();
 combCustomers.Items.Clear();
 for (int i = 0; i < customer.customerCount; i++)
 {
 string customerName = customer.customerObject[i].getSurname()
 + ", " + customer.customerObject[i].getTitle() + " "
 + customer.customerObject[i].getForename();
 combCustomers.Items.Add(customerName);
 }
 }

Run the program, move through to the CustomerDetails page and check that the comboBox
displays a list of your customer test data.

The next step is to transfer data to the textBoxes when an existing customer is selected.
Double click the customers comboBox and add code to the method.

 private void combCustomers_SelectedIndexChanged(object sender, EventArgs e)
 {
 int i = combCustomers.SelectedIndex;
 combTitle.Text = customer.customerObject[i].getTitle();
 txtForename.Text = customer.customerObject[i].getForename();
 txtSurname.Text = customer.customerObject[i].getSurname();
 txtAddress1.Text = customer.customerObject[i].getAddress1();
 txtAddress2.Text = customer.customerObject[i].getAddress2();
 txtTown.Text = customer.customerObject[i].getTown();
 txtPostcode.Text = customer.customerObject[i].getPostcode();
 txtEmail.Text = customer.customerObject[i].getEmail();
 txtPhone.Text = customer.customerObject[i].getPhone();
 }

 212 Programming with C#.NET

Run the program and check that customer contact information is displayed correctly when a
customer name is selected from the comboBox.

Care must be taken to avoid existing customer records being saved for a second time,
producing duplicate records in the database. Only records for new customers should be
saved. We can control this by means of a boolean ‘True / False’ variable to indicate whether
we have entered a new customer.

Add the boolean variable at the start of CustomerDetails.

 public partial class CustomerDetails : Form
 {
 int f_performanceID;
 double f_totalCost;
 int[,] f_seatStatus;
 string f_eventTitle;

 bool newCustomer = true;

 public CustomerDetails()
 {
 InitializeComponent();

 loadCustomers();
 }

We will begin by assuming that a new customer is being entered. If, however, an existing
customer is selected from the comboBox list, then newCustomer will be set to ‘false’. Add a
line to the start of the comboBox_Click method to do this.

 private void combCustomers_SelectedIndexChanged(object sender, EventArgs e)
 {
 newCustomer = false;

 int i = combCustomers.SelectedIndex;
 combTitle.Text = customer.customerObject[i].getTitle();

 Chapter 10: Theatre Bookings 213

Modify the ‘continue to payment’ button_Click method so that records are only saved for
new customers.

 private void btnContinue_Click(object sender, EventArgs e)
 {
 customerID = 0;

 if (newCustomer == true)
 {

 if (txtSurname.Text.Length > 0 && txtForename.Text.Length > 0 &&
 txtAddress1.Text.Length > 0 && txtPostcode.Text.Length > 0)
 {
 customerID = customer.saveCustomer(txtForename.Text, txtSurname.Text,
 combTitle.Text, txtAddress1.Text, txtAddress2.Text, txtTown.Text,
 txtPostcode.Text, txtEmail.Text, txtPhone.Text);
 }
 else
 {
 MessageBox.Show(
 "Missing customer information - name, address, postcode are required");
 }

 }
 else
 {
 int i = combCustomers.SelectedIndex;
 customerID = customer.customerObject[i].getCustomerID();
 }

 }

Run the program. Select an exiting customer from the comboBox list, then click the
‘continue to payment’ button. Exit from the program, then connect to the database. Check
that a duplicate copy of the customer record has NOT been saved into the database table.
Delete the connection to the database.

One final function to add to the CustomerDetails form is to clear all data from the textBoxes
when the ‘clear’ button is clicked.

Double click the ‘clear’ button and add code to the button_Click method. Notice that the
newCustomer variable is reset to ‘true’, as the user may now want to enter the details of a
new customer, rather than select a customer from the comboBox list.

 private void btnClear_Click(object sender, EventArgs e)
 {
 combCustomers.Text = "";
 combTitle.Text = "";
 txtForename.Clear();
 txtSurname.Clear();
 txtAddress1.Clear();
 txtAddress2.Clear();
 txtTown.Clear();
 txtPostcode.Clear();
 txtEmail.Clear();
 txtPhone.Clear();
 newCustomer = true;
 }

 214 Programming with C#.NET

This completes the collection of customer contact information, and the program can now
proceeed to the payment form.

Create a new Windows Form with the name ‘Payment’, and add components as shown:

Add a line of code to the ‘exit’ button_Click method.

 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }

We will again transfer data from the CustomerDetails form, ready for use in saving the
booking into the database. Add a set of variables at the start of the Payment form.

 public partial class Payment : Form
 {
 int f_performanceID;
 int f_customerID;
 double f_totalCost;
 int[,] f_seatStatus;

listBox listBox1

button

btnClose

textBox

txtCardNumber

button

btnMakeBooking

 Chapter 10: Theatre Bookings 215

Begin a getBooking() method which will import data from the CustomerDetails form.

 public void getBooking(int performanceID, double totalCost,
 int[,] seatStatus, int customerID, string eventTitle)
 {
 f_performanceID = performanceID;
 f_customerID = customerID;
 f_totalCost = totalCost;
 f_seatStatus = seatStatus;
 }

Return to the CustomerDetails form and add a block of code to the end of the ‘continue to
payment’ button_Click method. This will only operate if a customer record has been loaded
from disc or a new customer record entered in the database, so that a valid customerID has
been generated.

Booking data is transferred using the getBooking() method of the Payment form.

 else
 {
 int i = combCustomers.SelectedIndex;
 customerID = customer.customerObject[i].getCustomerID();
 }

 if (customerID > 0)
 {
 Payment frmPayment = new Payment();
 frmPayment.getBooking(f_performanceID, f_totalCost,
 f_seatStatus, customerID, f_eventTitle);
 frmPayment.ShowDialog();
 this.Close();
 }
 }

Run the program and work through to the CustomerDetails form. Click the ‘continue to
payment’ button and check that the Payment form opens correctly.

The next task is to display details of the booking in the listBox on the Payment form, so that
this can be confirmed as correct by the user before the booking is saved to the database.

Go to the getBooking() method of the Payment form and add lines of code as shown below

to clear the listBox and then display the title of the selected event.

 216 Programming with C#.NET

 public void getBooking(int performanceID, double totalCost, int[,]
 seatStatus, int customerID, string eventTitle)
 {
 f_performanceID = performanceID;
 f_customerID = customerID;
 f_totalCost = totalCost;
 f_seatStatus = seatStatus;

 listBox1.Items.Clear();
 listBox1.Items.Add("Event: "+eventTitle);
 listBox1.Items.Add("");

Test the program to make sure the title of the chosen event is displayed:

We will next display details of the chosen performance. To do this, another method will be
required in the performance class file which will load the details of a performance from the
database using the performanceID value, then create a performance object from this data.

Go to the performance class file and add a performanceDetails() method.
(This is very similar to the loadPerformances() method, so you may save time by copying
loadPerformances() and just making changes where necessary.)

 public static void performanceDetails(int p)
 {
 DataSet dsPerformances = new DataSet();

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 SqlCommand cmPerformances = new SqlCommand();
 cmPerformances.Connection = con;
 cmPerformances.CommandType = CommandType.Text;
 cmPerformances.CommandText = "SELECT * FROM Performance"
 + " WHERE performanceID='" + p + "'";
 SqlDataAdapter daPerformances = new SqlDataAdapter(cmPerformances);
 daPerformances.Fill(dsPerformances);
 con.Close();

 performanceObject[0] = new performance();
 DataRow dataRow = dsPerformances.Tables[0].Rows[0];
 performanceObject[0].setPerformanceID((int)dataRow[0]);
 performanceObject[0].setEventID((int)dataRow[1]);
 performanceObject[0].setDate(Convert.ToDateTime(dataRow[2]));
 performanceObject[0].setTime(Convert.ToString(dataRow[3]));
 performanceObject[0].setPrice(Convert.ToDouble(dataRow[4]));
 }

 Chapter 10: Theatre Bookings 217

Return to the Payment form and add lines of code to the getBooking() method.

 listBox1.Items.Clear();
 listBox1.Items.Add("Event: "+eventTitle);
 listBox1.Items.Add("");

 performance.performanceDetails(performanceID);
 DateTime performanceDate = performance.performanceObject[0].getDate();
 string format = " ddd d MMM yyyy";
 string performanceDateString = performanceDate.ToString(format);
 string performanceTime = performance.performanceObject[0].getTime();
 listBox1.Items.Add("Performance Date: "+performanceDateString + " at "
 + performanceTime);
 string seatPrice=(performance.performanceObject[0].getPrice()).ToString("f2");
 listBox1.Items.Add("Seat prince: " + seatPrice);

Run the program and check that performance details are displayed correctly.

We will now list the rows and numbers of the selected seats. This can be done from data
carried over in the seatStatus array. Selected seats will have a seatStatus value of 2.
Add further lines of code to the getBooking() method.

 listBox1.Items.Add("Performance Date: "+performanceDateString + " at "
 + performanceTime);
 string seatPrice=(performance.performanceObject[0].getPrice()).ToString("f2");
 listBox1.Items.Add("Seat prince: " + seatPrice);

 listBox1.Items.Add("");
 for (int j = 1; j <= 11; j++)
 {
 for (int i = 1; i <= 20; i++)
 {
 if (seatStatus[i, j] == 2)
 {
 char c = Convert.ToChar(64 + j);
 if (j > 8)
 c = Convert.ToChar(65 + j);
 listBox1.Items.Add("Row " + c + " Seat " + i);
 }
 }
 }
 listBox1.Items.Add("");

 listBox1.Items.Add("Total cost £ " + totalCost.ToString("f2"));
 listBox1.Items.Add(" ");

 218 Programming with C#.NET

Run the program. Make a booking for several seats, and check that the row and seat
numbers are displayed correctly. Check also that the total ticket cost is carried over
correctly to the Payment form.

The final block of information to be displayed in the list box is the name and address of the
customer. Another method will be required in the customer class file which will load the
details for a customer using their customerID value, then create a customer object from this
data.

Go to the customer class file and add a customerDetails() method. (This is very similar to
the loadCustomers() method, so you may save time by copying and pasting.)

 public static void customerDetails(int c)
 {
 DataSet dsCustomers = new DataSet();
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 SqlCommand cmCustomers = new SqlCommand();
 cmCustomers.Connection = con;
 cmCustomers.CommandType = CommandType.Text;
 cmCustomers.CommandText = "SELECT * FROM Customer"
 +" WHERE customerID ='" + c + "'";
 SqlDataAdapter daCustomers = new SqlDataAdapter(cmCustomers);
 daCustomers.Fill(dsCustomers);
 con.Close();

 customerObject[0] = new customer();
 DataRow dataRow = dsCustomers.Tables[0].Rows[0];
 customerObject[0].setCustomerID((int)dataRow[0]);
 customerObject[0].setForename(Convert.ToString(dataRow[1]));
 customerObject[0].setSurname(Convert.ToString(dataRow[2]));
 customerObject[0].setTitle(Convert.ToString(dataRow[3]));
 customerObject[0].setAddress1(Convert.ToString(dataRow[4]));
 customerObject[0].setAddress2(Convert.ToString(dataRow[5]));
 customerObject[0].setTown(Convert.ToString(dataRow[6]));
 customerObject[0].setPostcode(Convert.ToString(dataRow[7]));
 customerObject[0].setEmail(Convert.ToString(dataRow[8]));
 customerObject[0].setPhone(Convert.ToString(dataRow[9]));
 }

 Chapter 10: Theatre Bookings 219

Return to the Payment form and add code to complete the getBooking() method.

 listBox1.Items.Add("");
 listBox1.Items.Add("Total cost £ " + totalCost.ToString("f2"));
 listBox1.Items.Add(" ");

 customer.customerDetails(customerID);
 string customerName = customer.customerObject[0].getTitle() + " "
 + customer.customerObject[0].getForename() + " "
 + customer.customerObject[0].getSurname();
 listBox1.Items.Add(customerName);
 string address = customer.customerObject[0].getAddress1() + ", "
 + customer.customerObject[0].getAddress2();
 listBox1.Items.Add(address);
 string town = customer.customerObject[0].getTown() + ", "
 + customer.customerObject[0].getPostcode();
 listBox1.Items.Add(town);
 }

Run the program and check that customer details are shown correctly.

If the customer wishes to go ahead with their booking, they will provide their credit card
number and the user will click the ‘make booking’ button.

Before going further with the procedure to save the booking, we must create a booking
object class to handle the data. Create a booking class file.

 220 Programming with C#.NET

Add the properties for the booking class, and the methods for transfering data into and out
of the booking objects.

 class booking
 {
 private int bookingID;
 private int customerID;
 private int performanceID;
 private double totalCost;
 private string creditCardNumber;

 public void setBookingID(int b)
 {
 bookingID = b;
 }

 public int getBookingID()
 {
 return bookingID;
 }

 public void setCustomerID(int c)
 {
 customerID = c;
 }

 public int getCustomerID()
 {
 return customerID;
 }

 public void setPerformanceID(int p)
 {
 performanceID = p;
 }

 public int getPerformanceID()
 {
 return performanceID;
 }

 public void setTotalCost(double t)
 {
 totalCost = t;
 }

 public double getTotalCost()
 {
 return totalCost;
 }

 public void setCreditCardNumber(string cn)
 {
 creditCardNumber = cn;
 }

 public string getCreditCardNumber()
 {
 return creditCardNumber;
 }
 }

 Chapter 10: Theatre Bookings 221

When a booking is saved, the computer must carry out two tasks:

 Add a record to the booking table of the database. This will contain details of the
event, performance, seats selected, ticket cost and identification of the customer.

 The seat records for the selected seats must be updated to show them as no longer
available. The record for each booked seat should include the bookingID value, as a
link to the details of the booking.

We will begin by writing an AddBooking() method for the booking class. It is also necessary
to add ‘using SqlClient’ and ‘using Data’ directives, and to give the database location.

The AddBooking() method uses the SELECT SCOPE_IDENTITY() command to obtain the
bookingID value allocated to the new record.

using System.Linq;
using System.Text;

using System.Data.SqlClient;
using System.Data;

namespace theatreBookings
{
 class booking
 {
 public static string databaseLocation="C:\\C#\\theatreBookings.mdf;";

 private int bookingID;
 private int customerID;
 private int performanceID;
 private double totalCost;
 private string creditCardNumber;

 public static int AddBooking(int performanceID, int customerID,
 double t, string cn, int[,] seatStatus)
 {
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename="+databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 SqlCommand cmBooking = new SqlCommand();
 cmBooking.Connection = con;
 cmBooking.CommandType = CommandType.Text;
 cmBooking.CommandText="INSERT INTO Booking(customerID,performanceID,
 totalCost, creditCardNo)" + "VALUES ('" + customerID + "','"
 + performanceID + "','" + t + "','" + cn + "')";
 cmBooking.ExecuteNonQuery();
 cmBooking.CommandText = "SELECT SCOPE_IDENTITY()";
 int identity = Convert.ToInt32(cmBooking.ExecuteScalar());
 con.Close();
 return identity;
 }

 222 Programming with C#.NET

Return to the Payment form and double click the ‘make booking’ button to create a
button_Click method. Add code to call the AddBooking() method in the booking class,
which will save the booking record in the database.

 private void btnMakeBooking_Click(object sender, EventArgs e)
 {
 string creditCardNumber = txtCardNumber.Text;

 try
 {
 int bookingID = booking.AddBooking(f_performanceID, f_customerID,
 f_totalCost, creditCardNumber, f_seatStatus);
 }
 catch
 {
 MessageBox.Show("ERROR");
 }
 }

Run the program and make a booking, then click the ’make booking’ button. Keep a note of
the event, performance and customer selected.

Exit from the program and go to the Server Explorer window. Connect the database and
open the Booking table. Check that the booking has been saved correctly. You may need to
use the performanceID and customerID values to look up details in the Performance and
Customer tables.

After checking the tables, delete the connection to the database.

 Chapter 10: Theatre Bookings 223

The final step in recording the booking is to update the seats as no longer available. We will
need to add a method to the seat class to do this.

Open the seat class file and add an updateSeat() method.

 public static int seatCount;
 public static seat[] seatObject = new seat[240];

 public static void updateSeat(int performanceID, char seatRow,
 int seatNumber, int bookingID)
 {
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 SqlCommand cmSeats = new SqlCommand();
 cmSeats.Connection = con;
 cmSeats.CommandType = CommandType.Text;
 cmSeats.CommandText = "UPDATE Seat SET available='1', bookingID='"
 + bookingID + "' WHERE performanceID='" + performanceID
 + "' AND seatRow='" + seatRow + "' AND seatNumber='" + seatNumber + "'";
 cmSeats.ExecuteNonQuery();
 con.Close();
 }

Return to the Payment form and modify the ‘make booking’ button_Click method to allow
seats to be updated. Begin by adding variables to identify a seat, and a message box to
confirm to the user that the booking has been saved successfully. The Payment form can
then be closed, so that the user returns to the DisplayEvents page at the end of the booking
procedure.

 private void btnMakeBooking_Click(object sender, EventArgs e)
 {
 string creditCardNumber = txtCardNumber.Text;

 char seatRow;
 int seatNumber;
 int rowNumber;

 try
 {
 int bookingID = booking.AddBooking(f_performanceID, f_customerID,
 f_totalCost, creditCardNumber, f_seatStatus);

 MessageBox.Show("Booking completed");
 this.Close();
 }
 catch
 {
 MessageBox.Show("ERROR");
 }
 }

 224 Programming with C#.NET

We can now add the code which updates the seat records. Seat data is first loaded, then a

loop accesses each object in the seat array. If this seat has a seatStatus value of 2,

indicating that it has been selected for the booking, then it will be marked as ‘booked’ by

calling the updateSeat() method in the seat class.

 try
 {
 int bookingID = booking.AddBooking(f_performanceID, f_customerID,
 f_totalCost, creditCardNumber, f_seatStatus);

 seat.loadSeats(f_performanceID);
 for (int i = 0; i < seat.seatCount; i++)
 {
 seatRow = seat.seatObject[i].getSeatRow();
 seatNumber = seat.seatObject[i].getSeatNumber();

 rowNumber = (int)seatRow - 64;
 if (rowNumber > 8)
 rowNumber--;

 if (f_seatStatus[seatNumber, rowNumber] == 2)
 {
 seat.updateSeat(f_performanceID, seatRow, seatNumber, bookingID);
 }
 }

 MessageBox.Show("Booking completed");
 this.Close();
 }

Run the program and make a booking for several seats. Keep a record of the performance
and seats selected.

 Chapter 10: Theatre Bookings 225

Complete the booking

Return to the same performance and confirm that the seats selected previously are now
displayed as ‘booked’.

As a final check that the system is working correctly, exit from the program and go to the
Server Explorer. Connect the database and confirm that the correct bookingID is shown
alongside the booked seats.

 226 Programming with C#.NET

This completes the booking procedure.
We have two further sections of the program to develop. These will provide information for
the theatre staff about bookings received and customer contact details.

Go to the Solution Explorer window. Right click the theatreBookings program icon to add a
new Windows Form. Give this the name TicketSales.

Add components to the form.

comboBox

combEvent

comboBox

combPerformance

Label – text property set to ‘0’

lblPrice

textBox

txtTotalSales
button

btnClose

 Chapter 10: Theatre Bookings 227

Open the code window for the TicketSales form and add lines to the TicketSales() method
to load the titles of theatre events into the comboBox.

 public TicketSales()
 {
 InitializeComponent();

 combEvent.Items.Clear();
 string eventTitle;
 for (int i = 0; i < theatreEvent.eventCount; i++)
 {
 eventTitle = theatreEvent.eventObject[i].getTitle();
 combEvent.Items.Add(eventTitle);
 }
 }

Go to the DisplayEvents form and double click the ‘Display ticket sales for performance’
menu option. Add code to the menu_Click method to open the TicketSales form.

 private void displayTicketSalesForPerformanceToolStripMenuItem_Click(
 object sender, EventArgs e)
 {
 TicketSales frmTicketSales = new TicketSales();
 frmTicketSales.ShowDialog();
 }

Run the program and check that a list of event titles is displayed.

Return to the TicketSales form and add code to the ‘close’ button.

 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }

 228 Programming with C#.NET

Double click the event comboBox to create a method. Add code which will load
performance dates and times for the selected event.

 private void combEvent_SelectedIndexChanged(object sender, EventArgs e)
 {
 int i = combEvent.SelectedIndex;
 int eventID = theatreEvent.eventObject[i].getEventID();
 performance.loadPerformances(eventID);
 combPerformance.Items.Clear();
 for (int p = 0; p < performance.performanceCount; p++)
 {
 DateTime performanceDate = performance.performanceObject[p].getDate();
 string format = " ddd d MMM yyyy";
 string performanceDateString = performanceDate.ToString(format);
 string performanceTime = performance.performanceObject[p].getTime();
 combPerformance.Items.Add(performanceDateString + " at " +
 performanceTime);
 }
 }

Run the program to check that performance details are displayed correctly.

We can make use of the drawPlan() method which we wrote earlier for the TheatrePlan
form.

Begin by adding the button, label and seatStatus arrays at the start of the TicketSales form.

 public partial class TicketSales : Form
 {
 Button[,] btnSeat = new Button[22, 12];
 Label[] label = new Label[12];
 int[,] seatStatus = new int[21, 12];

Copy the drawPlan() method from TheatrePlan into the TicketSales form.

The seat plan will be for display only, and it is not necessary for the seat buttons to be
interactive. Remove the lines of code which allocate names to the seat buttons and create
button_Click methods, as indicated on the next page.

 Chapter 10: Theatre Bookings 229

 private void drawPlan()
 {
 int offset;
 int seatMax;
 for (int j = 1; j <= 11; j++)
 {
 seatMax = 20;
 if (j == 1) seatMax = 14;
 if (j == 2) seatMax = 16;
 if (j == 3) seatMax = 17;
 if (j == 4) seatMax = 19;
 if (j >= 7 && j <= 9) seatMax = 19;
 if (j == 11) seatMax = 19;
 for (int i = 1; i <= seatMax; i++)
 {
 offset = 0;
 if (j == 1) offset = 4;
 if (j == 2) offset = 3;
 if (j == 3) offset = 2;
 if (j == 4) offset = 1;
 if (j >= 7 && j <= 9) offset = 1;
 btnSeat[i, j] = new Button();
 btnSeat[i, j].Width = 28;
 btnSeat[i, j].Height = 28;
 btnSeat[i, j].Left = ((28 * i) + (28 * offset));
 if ((i + offset) > 15)
 btnSeat[i, j].Left += 28;
 btnSeat[i, j].Top = (28 * j);
 btnSeat[i, j].Image = Image.FromFile("../../seat1.png");
 if (seatStatus[i, j] == 1)
 btnSeat[i, j].Image = Image.FromFile("../../seat2.png");

 String buttonName = "btn";
 if (j <= 9)
 buttonName += " ";
 buttonName += j;
 if (i <= 9)
 buttonName += " ";
 buttonName += i;
 btnSeat[i, j].Name = buttonName;
 btnSeat[i, j].Click += new EventHandler(seat_Click);

 pnlTheatre.Controls.Add(btnSeat[i, j]);
 int rowNumber = j;
 if (j > 8)
 rowNumber++;
 string tooltipText = Convert.ToChar(rowNumber + 64).ToString()
 + (i).ToString();
 ToolTip buttonToolTip = new ToolTip();
 buttonToolTip.SetToolTip(btnSeat[i, j], tooltipText);
 }
 label[j] = new Label();
 label[j].Size = new System.Drawing.Size(24, 30);
 char c = Convert.ToChar(64 + j);
 if (j > 8)
 c = Convert.ToChar(65 + j);
 label[j].Text = Convert.ToString(c);
 label[j].Font = new System.Drawing.Font("Microsoft Sans Serif", 10F,
 System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point,
 ((byte)(0)));
 label[j].Location = new System.Drawing.Point(455, 4 + 28 * j);
 pnlTheatre.Controls.Add(label[j]);
 }
 }

Remove these

lines of code

 230 Programming with C#.NET

Double click the performance comboBox and add code to load the seat data for the selected
performance. This data is transferred to the seatStatus array, using code values of 0 for an
available seat and 1 for a booked seat. At the same time, the total cost of tickets for all
booked seats is being calculated.

When seat data has been processed, the previous pattern of seat buttons are removed from
the form, and the drawPlan() method is called to create the seating plan display.

 private void combPerformance_SelectedIndexChanged(object sender, EventArgs e)
 {
 int p = combPerformance.SelectedIndex;
 int performanceID = performance.performanceObject[p].getPerformanceID();
 double seatCost = performance.performanceObject[p].getPrice();

 seat.loadSeats(performanceID);
 double totalSales = 0;
 for (int i = 0; i < seat.seatCount; i++)
 {
 char c = seat.seatObject[i].getSeatRow();
 int r = ((int)c) - 64;
 if (r > 8)
 r--;
 int s = seat.seatObject[i].getSeatNumber();
 int available = seat.seatObject[i].getAvailable();
 seatStatus[s, r] = available;
 if (available == 1)
 {
 totalSales += seatCost;
 }
 }
 int totalButtons = pnlTheatre.Controls.Count;
 for (int i = 0; i < totalButtons; i++)
 {
 pnlTheatre.Controls.RemoveAt(0);
 }
 drawPlan();
 lblPrice.Text = seatCost.ToString("f2");
 txtTotalSales.Text = totalSales.ToString("f2");
 }

Run the program and check that seat plans can be displayed for any performance.

 Chapter 10: Theatre Bookings 231

The final option we will include in our program is to view customer records.

Add another Windows Form with the name ‘CustomerRecord’. Add components to the
form as shown.

Double click the ‘close’ button and add a line of code.

 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }

comboBox

combCustomers

listBox

listBox1

textBoxes:

txtTitle

txtForename

txtSurname

txtAddress1

txtAddress2

txtTown

txtPostcode

txtEmail

txtPhone

txtPhone

button

btnClose

 232 Programming with C#.NET

Create a loadCustomers() method which will load customer names into the drop-down
comboBox list. Call this method from the CustomerRecord() method.

 public CustomerRecord()
 {
 InitializeComponent();

 loadCustomers();
 }

 private void loadCustomers()
 {
 customer.loadCustomers();
 combCustomers.Items.Clear();
 for (int i = 0; i < customer.customerCount; i++)
 {
 string customerName = customer.customerObject[i].getSurname() + ", "
 + customer.customerObject[i].getTitle() + " "
 + customer.customerObject[i].getForename();
 combCustomers.Items.Add(customerName);
 }
 }

Go to the DisplayEvents form and add code to the ‘View customer records’ menu option to
load the CustomerRecord form.

Run the program and check that customer names are listed correctly in the comboBox on
the CustomerRecord form.

Return to the CustomerRecord page and double click the comboBox. Add code to the
method.

 private void combCustomers_SelectedIndexChanged(object sender, EventArgs e)
 {
 int i = combCustomers.SelectedIndex;
 int customerID=customer.customerObject[i].getCustomerID();
 txtTitle.Text = customer.customerObject[i].getTitle();
 txtForename.Text = customer.customerObject[i].getForename();
 txtSurname.Text = customer.customerObject[i].getSurname();
 txtAddress1.Text = customer.customerObject[i].getAddress1();
 txtAddress2.Text = customer.customerObject[i].getAddress2();
 txtTown.Text = customer.customerObject[i].getTown();
 txtPostcode.Text = customer.customerObject[i].getPostcode();
 txtEmail.Text = customer.customerObject[i].getEmail();
 txtPhone.Text = customer.customerObject[i].getPhone();
 }

 Chapter 10: Theatre Bookings 233

Run the program and select a customer from the comboBox on the CustomerRecord form.
The customer name, address, e-mail and phone number should be displayed.

The final step is to display the details of the bookings made by the selected customer.
Before doing this we must add a method to the booking class.

Open the booking class file and create a loadBookings() method. Also add a bookingCount
variable, and an array to hold bookingObjects.

 private double totalCost;
 private string creditCardNumber;

 public static int bookingCount;
 public static booking[] bookingObject = new booking[16];

 public static void loadBookings(int customerID)
 {
 bookingCount = 0;
 DataSet dsBookings = new DataSet();
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 SqlCommand cmBookings = new SqlCommand();
 cmBookings.Connection = con;
 cmBookings.CommandType = CommandType.Text;
 cmBookings.CommandText = "SELECT * FROM Booking WHERE customerID = '"
 + customerID + "'";
 SqlDataAdapter daBookings = new SqlDataAdapter(cmBookings);
 daBookings.Fill(dsBookings);
 con.Close();
 bookingCount = dsBookings.Tables[0].Rows.Count;
 for (int i = 0; i < bookingCount; i++)
 {
 bookingObject[i] = new booking();
 DataRow dataRow = dsBookings.Tables[0].Rows[i];
 bookingObject[i].setBookingID((int)dataRow[0]);
 bookingObject[i].setPerformanceID((int)dataRow[2]);
 bookingObject[i].setTotalCost(Convert.ToDouble(dataRow[3]));
 bookingObject[i].setCreditCardNumber(Convert.ToString(dataRow[4]));
 }
 }

 234 Programming with C#.NET

Return to the CustomerRecord form and add code to the Customers comboBox
IndexChanged() method. This loads the booking records and uses a loop to check if each
booking has been made by the selected customer. If so, the details of the booked
performance will be displayed in the listBox on the CustomerRecord form.

 txtTown.Text = customer.customerObject[i].getTown();
 txtPostcode.Text = customer.customerObject[i].getPostcode();
 txtEmail.Text = customer.customerObject[i].getEmail();
 txtPhone.Text = customer.customerObject[i].getPhone();

 booking.loadBookings(customerID);
 listBox1.Items.Clear();
 for (int b = 0; b < booking.bookingCount; b++)
 {
 int performanceID = booking.bookingObject[b].getPerformanceID();
 performance.performanceDetails(performanceID);
 DateTime performanceDate = performance.performanceObject[0].getDate();
 string format = "ddd d MMM yyyy";
 string performanceDateString = performanceDate.ToString(format);
 string performanceTime = performance.performanceObject[0].getTime();
 int eventID = performance.performanceObject[0].getEventID();
 for (int j = 0; j < theatreEvent.eventCount; j++)
 {
 int eventIDfound = theatreEvent.eventObject[j].getEventID();
 if (eventID == eventIDfound)
 {
 string eventTitle = theatreEvent.eventObject[j].getTitle();
 listBox1.Items.Add(eventTitle);
 }
 }
 listBox1.Items.Add("EventID: " + eventID);
 listBox1.Items.Add("");
 listBox1.Items.Add("PerformanceID: " + performanceID);
 listBox1.Items.Add(performanceDateString + " at " + performanceTime);
 listBox1.Items.Add("");
 int bookingID = booking.bookingObject[b].getBookingID();
 listBox1.Items.Add("BookingID: " + bookingID);
 }

Run the program and check that the performances booked are displayed.

 Chapter 10: Theatre Bookings 235

The only thing to now add is a list of the seats booked by the customer and payment details.
Add code to the Customers comboBox IndexChanged() method to do this.

 listBox1.Items.Add("PerformanceID: " + performanceID);
 listBox1.Items.Add(performanceDateString + " at " + performanceTime);
 listBox1.Items.Add("");
 int bookingID = booking.bookingObject[b].getBookingID();
 listBox1.Items.Add("BookingID: " + bookingID);

 listBox1.Items.Add("Seats booked:");
 seat.loadSeats(performanceID);
 for (int k = 0; k < seat.seatCount; k++)
 {
 int bookingIDfound = seat.seatObject[k].getBookingID();
 if (bookingID == bookingIDfound)
 {
 char seatRow = seat.seatObject[k].getSeatRow();
 string seatBooked = Convert.ToString(seatRow)
 + Convert.ToString(seat.seatObject[k].getSeatNumber());
 listBox1.Items.Add(seatBooked);

 }
 }
 listBox1.Items.Add("");
 double totalCost = booking.bookingObject[b].getTotalCost();
 listBox1.Items.Add("Total cost: £ " + totalCost.ToString("f2"));
 listBox1.Items.Add("");
 string creditCardNumber = booking.bookingObject[b].getCreditCardNumber();
 listBox1.Items.Add("Payment by credit card " + creditCardNumber);
 listBox1.Items.Add("______________________________________");
 listBox1.Items.Add("");
 }

Run the program and check that seats booked are now listed.

Congratulations on completing this final project successfully.

