
 Chapter 4: Solitaire 31

4 Solitaire

For our next application, we will produce an on-screen version of the game Solitaire.

Solitaire is a game for one player. The board consists of a cross-shaped array of holes, into

which pegs or other playing pieces are inserted. At the start of the game, all holes are

occupied except for the one central position.

The objective of the game is to remove all but one of the playing pieces, leaving this single

piece in the central hole.

A move is made by jumping a playing piece over the top of another piece, to land in a hole.

The jumped piece is removed from the board. Moves may occur along the horizontal or

vertical lines of the grid, but not diagonally.

In this project, we will produce an interactive graphical program to allow the user to play

the game of Solitaire on screen using the mouse. The program should remove jumped

pieces from the board automatically, but should only allow valid moves to be made. Begin

by setting up a Windows Forms Application. Give this the name ‘solitaire’:

32 Programming with C#.NET

We will begin by putting a Panel component onto Form1. Drag the mouse to produce an outline for

the playing area. Give the Panel the name ‘pnlGame’

Click-right on Form1 and select ‘View Code’.

Create an empty method called initialiseBoard(). We will add code to this later to display the

playing pieces.

Add a line to the Form1() method to call initialiseBoard() when the program starts:

namespace solitaire
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 initialiseBoard();
 }

 private void initialiseBoard()
 {

 }
 }
}

A simple way to make the interactive screen for the game is to create a pattern of Button

components to represent the grid of playing pieces and holes.

Rather than adding each button by hand, which would take a lot of time and would be inaccurate,

we can write program code to set up the buttons automatically when the program runs.

 Chapter 4: Solitaire 33

Begin by creating a two dimensional array of Button components by adding the line of code above

the initialiseBoard() method.

Within initialiseBoard() we can use two nested loops to produce a rectangular grid of 7 rows and

7 columns of buttons. Each button will have a width and height of 40 pixels, and we change the top

left corner position of each button so that it fits correctly into the grid pattern.

 public Form1()
 {
 InitializeComponent();
 initialiseBoard();
 }

 Button[,] btnGame = new Button[8, 8];

 private void initialiseBoard()
 {
 for (int i = 1; i <= 7; i++)
 {
 for (int j = 1; j <= 7; j++)
 {
 btnGame[i, j] = new Button();
 btnGame[i, j].Width = 40;
 btnGame[i, j].Height = 40;
 btnGame[i, j].Left = (40 * i);
 btnGame[i, j].Top = (40 * j);
 pnlGame.Controls.Add(btnGame[i, j]);
 }
 }
 }

Run the program, and a grid of buttons should be created:

This is a good start, but the playing area is actually in the shape of a cross, with the four corner areas

omitted. We can modify the initialiseBoard() method to allow for this.

34 Programming with C#.NET

Set up a Boolean variable called ‘present’. For any grid position, we will set ‘present’ to TRUE if a

button is required, but FALSE if that position is to be left blank.

Add the nested IF.. conditions which will set ‘present’ to FALSE for each of the corner areas of the

cross.

 private void initialiseBoard()
 {
 bool present;

 for (int i = 1; i <= 7; i++)
 {
 for (int j = 1; j <= 7; j++)
 {
 present = true;
 if (i <= 2 || i >= 6)
 {
 if (j <= 2 || j >= 6)
 {
 present = false;
 }
 }

 if (present == true)
 {

 btnGame[i, j] = new Button();
 btnGame[i, j].Width = 40;
 btnGame[i, j].Height = 40;
 btnGame[i, j].Left = (40 * i);
 btnGame[i, j].Top = (40 * j);
 pnlGame.Controls.Add(btnGame[i, j]);
 }
 }
 }
 }

Run the program, and we should now have the correct pattern of buttons for the playing area:

 Chapter 4: Solitaire 35

The next step is to make the board look more realistic by adding graphics to represent the playing

pieces and holes. Two small graphics images will be needed, which can be displayed on the buttons

as appropriate:

 peg.png hole.png

Create or copy these images, and store them somewhere on your computer.

We will now import the images into the C# project. To do this, go to the Solution Explorer window

and right-click on the ‘solitaire’ program icon. Select ‘Add / Existing Item’.

Set the file type to 'All Files' and navigate to where the graphics images are saved. Click ‘Add’ for

each image file:

36 Programming with C#.NET

We can now return to the initialiseBoard() method, and add a line of code to display the ‘peg.png’

image on each button:

 if (present == true)
 {
 btnGame[i, j] = new Button();
 btnGame[i, j].Width = 40;
 btnGame[i, j].Height = 40;
 btnGame[i, j].Left = (40 * i);
 btnGame[i, j].Top = (40 * j);

 btnGame[i, j].Image = Image.FromFile("../../peg.png");

 pnlGame.Controls.Add(btnGame[i, j]);
 }

Run the program, and the pattern of playing pieces should appear:

This is almost correct, but we need to begin the game with an empty hole at the centre of the board.

Add code to the initialiseBoard() method to treat this as a special case:

 if (present == true)
 {
 btnGame[i, j] = new Button();
 btnGame[i, j].Width = 40;
 btnGame[i, j].Height = 40;
 btnGame[i, j].Left = (40 * i);
 btnGame[i, j].Top = (40 * j);

 btnGame[i, j].Image = Image.FromFile("../../peg.png");

 if (i == 4 && j == 4)
 {
 btnGame[i, j].Image = Image.FromFile("../../hole.png");
 }

 pnlGame.Controls.Add(btnGame[i, j]);
 }

 Chapter 4: Solitaire 37

Run the program and check that the pattern is now correct:

The next stage is to play the game, but before that we must provide the program with a way of

recording the positions of the playing pieces and the empty holes. This will be necessary if the

computer is going to check for valid moves.

A simple method is to use a two dimensional array of code numbers which correspond to the

buttons on the game board. For each button displaying a ‘peg’ , the equivalent code value will be 1.

For each button displaying a ‘hole’, the equivalent code value will be 0.

Start by setting up the array:

 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 initialiseBoard();
 }

 Button[,] btnGame = new Button[8, 8];

 int[,] play = new int[8, 8];

Go to the initialiseBoard() method.

At the point where a button is set to display the ‘peg’ image, we will set the corresponding value in

the ‘play’ array to 1.

At the point where the central button is set to display the ‘hole’ image, we will set the corresponding

value in the ‘play’ array to 0:

38 Programming with C#.NET

 if (present == true)

 {
 btnGame[i, j] = new Button();
 btnGame[i, j].Width = 40;
 btnGame[i, j].Height = 40;
 btnGame[i, j].Left = (40 * i);
 btnGame[i, j].Top = (40 * j);

 btnGame[i, j].Image = Image.FromFile("../../peg.png");

 play[i, j] = 1;

 if (i == 4 && j == 4)
 {
 btnGame[i, j].Image = Image.FromFile("../../hole.png");

 play[i, j] = 0;
 }

 pnlGame.Controls.Add(btnGame[i, j]);
 }

We can now consider the way that the user will play the game, by clicking on the piece which they

wish to move, then clicking on the hole to which it should be moved. For this to work, the program

must be able to:

 identify which buttons have been clicked, and

 have a method which will process the move.

We will add some code to do these things…

We can allocate names to each button, made up from its column and row position. For example, the

button in the middle of the top row will be: ‘btn41’, and the button in the centre of the board will

be ‘btn44’. The button names are created using the loop counter values i and j

For the button to respond when it is clicked, we need to create an event handler, and set up an

empty button-click method:

 if (i == 4 && j == 4)
 {
 btnGame[i, j].Image = Image.FromFile("../../hole.png");
 play[i, j] = 0;
 }

 String buttonName = "btn" + i + j;
 btnGame[i, j].Name = buttonName;
 btnGame[i, j].Click += new EventHandler(game_Click);

 pnlGame.Controls.Add(btnGame[i, j]);
 }
 }
 }
 }

 private void game_Click(object sender, EventArgs e)
 {

 }

 Chapter 4: Solitaire 39

We can now think about the game play. This is quite complex, so we need a way of checking that

the program is working correctly. For testing purposes, add a ListBox component at the side of the

playing grid. This will be removed later when we are sure that the processing is correct.

It is important that the program correctly identifies the button that is clicked.

Add code to the game_Click() method which will check the name of the button and use this to

determine its column and row number. We will output these values to the ListBox, to ensure that

they are correct.

 private void game_Click(object sender, EventArgs e)
 {
 Button clickedButton = (Button)sender;

 string s = clickedButton.Name;
 int Ipos = Convert.ToInt16(s.Substring(3, 1));
 int Jpos = Convert.ToInt16(s.Substring(4, 1));

 listBox1.Items.Add("i = " + Ipos);
 listBox1.Items.Add("j = " + Jpos);

 }

40 Programming with C#.NET

Run the program. Click on different buttons, and check that the correct column and row values are

given in each case:

Go to the start of the program and add variables which we will use to record the button positions

clicked during a move.

 public Form1()
 {
 InitializeComponent();
 initialiseBoard();
 }

 Button[,] btnGame = new Button[8, 8];
 int[,] play = new int[8, 8];

 int startI = 0, startJ = 0, finishI = 0, finishJ = 0;

Two buttons must be clicked by the player in order to make a move – firstly on the piece they wish

to move, and then on the hole to which it will move. The following lines of code record the column

and row positions of each of the button clicks:

 We begin with the start position undefined, with a column value of zero. The first

button_click coordinates are assigned to the ‘start’ variables.

 Once the start position has been found, the next button_click coordinates are assigned to

the ‘finish’ variables.

 The move made by the player can then be checked against the rules of the game, and the

move carried out if it is valid.

 The ‘start’ column variable is then set back to zero, ready to receive the pair of button clicks

during the next move.

i = 4

j = 1

 Chapter 4: Solitaire 41

Add the lines of code to carry out these actions, and set up an empty method ready for the code

which will check and carry out the moves.

 listBox1.Items.Add("i = " + Ipos);
 listBox1.Items.Add("j = " + Jpos);

 if (startI == 0)
 {
 startI = Ipos;
 startJ = Jpos;
 }
 else
 {
 finishI = Ipos;
 finishJ = Jpos;
 checkMove(startI,startJ,finishI,finishJ);
 startI = 0;
 }

 }

 private void checkMove(int startI,int startJ,int finishI,int finishJ)
 {

 }

Once the program enters the checkMove() method, it should know the start and finish positions for

the proposed move. Let’s begin by checking that these positions are being identified correctly from

the mouse clicks.

Add lines of code to the checkMove() method which will output the start and finish positions to the

list box:

 private void checkMove(int startI,int startJ,int finishI,int finishJ)
 {
 listBox1.Items.Add("Checking move from: ");

 listBox1.Items.Add("i=" + startI + ", j=" + startJ);

 listBox1.Items.Add("to: ");
 listBox1.Items.Add("i=" + finishI + ", j=" + finishJ);

 listBox1.Items.Add("");

}

42 Programming with C#.NET

Run the program. Click on pairs of buttons, and verify that the correct column and row positions are

being recorded in the list box:

Moves are only valid if the start and finish positions are either on the same horizontal row, or in the

same vertical column of the grid. We can easily check for a horizontal move, by checking that the

start and finish j positions are the same. Add a ListBox output line to show this:

 private void checkMove(int startI,int startJ,int finishI,int finishJ)
 {

listBox1.Items.Add("");

listBox1.Items.Add("Checking move from: ");
listBox1.Items.Add("i=" + startI + ", j=" + startJ);

listBox1.Items.Add("to: ");
listBox1.Items.Add("i=" + finishI + ", j=" + finishJ);

if (startJ == finishJ)
{
 listBox1.Items.Add("Move on a horizontal line");
}

listBox1.Items.Add("");

 }

 Chapter 4: Solitaire 43

Run the program, and check that a horizontal move can be detected correctly:

The next requirement for a valid move is that the start and finish positions must be two squares

apart, for example: moving along a row from column 2 to column 4, or in the opposite direction

from column 4 to column 2.

We can check this by subtracting the finish column from the start column, and checking that the

answer is 2 when any minus sign is ignored. This can be done using the ABSOLUTE function, which

shows any number, positive or negative, as its positive equivalent:

if (startJ == finishJ)
{
 listBox1.Items.Add("Move on a horizontal line");

 if (Math.Abs(startI - finishI) == 2)
 {

 listBox1.Items.Add("Positions are 2 squares apart");
 }

}

44 Programming with C#.NET

Run the program and check that the computer can detect moves between positions which are two

squares apart on a horizontal line.

The final condition for a valid move is that the start square and middle square have playing pieces

on them, whilst the finish square is empty. This can be checked using the play[] array values:

if (Math.Abs(startI - finishI) == 2)
 {

listBox1.Items.Add("Positions are 2 squares apart");

int middle = (startI + finishI) / 2;

 if (play[startI, startJ] == 1 && play[middle, startJ] == 1
 && play[finishI, finishJ] == 0)
 {
 listBox1.Items.Add("VALID MOVE");
 }

}

 Chapter 4: Solitaire 45

Run the program, and test that the computer can correctly detect valid horizontal moves:

Once a valid move has been made, we can change the pattern of playing pieces on the board

accordingly. The play[] array values can be updated to reflect the new state of the board:

if (play[startI, startJ] == 1 && play[middle, startJ] == 1
 && play[finishI, finishJ] == 0)
{
 listBox1.Items.Add("VALID MOVE");

 play[startI, startJ] = 0;
 btnGame[startI, startJ].Image = Image.FromFile("../../hole.png");

 play[middle, startJ] = 0;
 btnGame[middle, startJ].Image = Image.FromFile("../../hole.png");

 play[finishI, finishJ] = 1;
 btnGame[finishI, finishJ].Image = Image.FromFile("../../peg.png");
}

46 Programming with C#.NET

Run the program again and test that horizontal moves are now displayed correctly:

If the procedure for horizontal moves is now working correctly, then the screen display can be tidied

by removing the ListBox. The lines in the program which output text to the ListBox can also be

removed:

private void checkMove(int startI,int startJ,int finishI,int finishJ)
{

 if (startJ == finishJ)
 {
 if (Math.Abs(startI - finishI) == 2)
 {
 int middle = (startI + finishI) / 2;

 if (play[startI, startJ] == 1 && play[middle, startJ] == 1
 && play[finishI, finishJ] == 0)
 {
 play[startI, startJ] = 0;
 btnGame[startI, startJ].Image = Image.FromFile("../../hole.png");

 play[middle, startJ] = 0;
 btnGame[middle, startJ].Image = Image.FromFile("../../hole.png");

 play[finishI, finishJ] = 1;
 btnGame[finishI, finishJ].Image = Image.FromFile("../../peg.png");
 }
 }
 }

 Chapter 4: Solitaire 47

Make a copy of the ‘horizontal move’ code, and paste this immediately below to make an equivalent

‘vertical move’ procedure:

private void checkMove(int startI,int startJ,int finishI,int finishJ)
{

 if (startJ == finishJ)
 {
 if (Math.Abs(startI - finishI) == 2)
 {
 int middle = (startI + finishI) / 2;

 if (play[startI, startJ] == 1 && play[middle, startJ] == 1
 && play[finishI, finishJ] == 0)
 {
 play[startI, startJ] = 0;
 btnGame[startI, startJ].Image = Image.FromFile("../../hole.png");

 play[middle, startJ] = 0;
 btnGame[middle, startJ].Image = Image.FromFile("../../hole.png");

 play[finishI, finishJ] = 1;
 btnGame[finishI, finishJ].Image = Image.FromFile("../../peg.png");
 }
 }
 }

To complete the ‘vertical move’ procedure, some changes to the code are necessary. These are

outlined below:

if (startI == finishI)
 {
 if (Math.Abs (startJ - finishJ) == 2)
 {
 int middle = (startJ + finishJ) / 2;

 if (play[startI, startJ] == 1 && play[startI, middle] == 1
 && play[finishI, finishJ] == 0)
 {
 play[startI, startJ] = 0;
 btnGame[startI, startJ].Image = Image.FromFile("../../hole.png");

 play[startI, middle] = 0;

 btnGame[startI, middle].Image = Image.FromFile("../../hole.png");

 play[finishI, finishJ] = 1;
 btnGame[finishI, finishJ].Image = Image.FromFile("../../peg.png");
 }
 }
 }

copy

48 Programming with C#.NET

Run the program and test both horizontal and vertical moves are made correctly. It should now be

possible to play the complete game of solitaire.

One last improvement that can be made is the addition of a ‘New Game’ button, to reset the playing

pieces to the start position. Add a Button component to the form and give this the name

btnNewgame.

To restart the game, it is necessary to remove the current buttons, then call the initialiseBoard()

method to set up the playing pieces again in the start position. Add code to the button_click

method to do this:

 private void btnNewgame_Click(object sender, EventArgs e)
 {

 int totalButtons = pnlGame.Controls.Count;
 for (int i = 0; i < totalButtons; i++)
 {
 pnlGame.Controls.RemoveAt(0);
 }
 initialiseBoard();

 }

Run the program. Make some moves, then test that the ‘New Game’ method operates correctly.

