
 Chapter 6: London Underground 59

6 London Underground

In the next project we will investigate a more challenging program algorithm, to provide

information to travellers about routes between stations on the London Underground

system. This program will combine the use of database files and some new techniques for

producing screen graphics.

The London Underground is a large system of interconnected lines. To keep our project

manageable, we will restrict the program to just four: the Circle, Victoria, Central and

Northern lines, and we will include only a small sample of stations along these routes. The

principles we develop, however, could be extended in a fairly straightforward way to cover

the complete network.

We will begin by setting up a database to hold information about the stations and their map

locations. Open Visual Studio, and display the Server Explorer window. Right click on Data

Connections and select ‘Add Connection’ . Set up a new Microsoft SQL Server Database File

called ‘underground’ in the same directory as your C# program folders.

60 Programming with C#.NET

The new database ‘underground’ should be listed under the Data Connections icon. Click the small

arrow to the left to open the database. Right click on ‘Tables’ and select ‘Add New Table’.

We are going to create a table which will store the names and map coordinates of a number of

underground stations. Set up the Column Names and Data Types as shown:

Go to the CREATE TABLE line of the SQL code and change the table name to 'stations'.

Click the Update button. When the Database Updates window opens, click the 'Update Database'

button.

Finally, close the design window by clicking the small cross above the table.

 Chapter 6: London Underground 61

Right-click on underground.mdf in the Server Explorer window and select 'Refresh'.

Click the small arrow to the left of the Tables icon to show the ‘stations’ table. Right click on

‘stations’ and select ‘Show Table Data’. A blank table should appear:

Enter the station information given in the list below. The map coordinates have been found for you

by copying the London Underground map into the graphics utility program Paint, then reading off

the coordinates as the cursor was moved over each of the required stations.

StationID StationName Xpos (pixels across) Ypos (pixels down)

1 Ealing Broadway 105 269

2 Notting Hill Gate 270 268

3 Paddington 272 221

4 Euston 409 218

5 High Barnet 439 26

6 Oxford Circus 361 267

7 Tottenham Court Road 400 267

8 Embankment 400 333

9 Victoria 342 333

10 South Kensington 280 333

11 Stockwell 383 446

12 Morden 294 535

13 Brixton 410 472

14 Tower Hill 529 299

15 Liverpool Street 531 250

16 Epping 667 11

17 Walthamstow Central 629 119

18 Stratford 667 199

19 Kings Cross 440 218

Check your entries carefully, then close the table. Go to the Server Explorer window and delete the

connection to the underground.mdf database.

62 Programming with C#.NET

We can now set up the C# program. Select ‘FILE / New Project’. Click 'Visual C#' and ‘Windows

Forms Application’, and set the program name to ‘underground’.

Form1 will be created. Right click the form and select ‘View Code’.

The first stage is to load the station data from the database table.

 Add ‘SqlClient’ to the list of ‘using’ directives at the start of the program.

 Show the database location,

 Create a DataSet for the station data.

 Set up the GetStations() method to load the station data from the database table. This will

be very similar to the method you used to load flight data in the Airport program.

 Add a line to the Form1() method to run GetStations() when the program first starts.

using System.Windows.Forms;

using System.Data.SqlClient;

namespace underground
{
 public partial class Form1 : Form
 {
 string databaseLocation = "C:\\C#\\underground.mdf;";
 DataSet dsStations = new DataSet();

 public Form1()
 {
 InitializeComponent();

 GetStations();
 }

 private void GetStations()
 {

 }
 }

 Chapter 6: London Underground 63

Add code to the GetStations() method which will load the data and transfer it to the DataSet. Note

that the line beginning:

 SqlConnection con =

should be entered as a single line of code with no line breaks.

 private void GetStations()
 {
 try
 {
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" + databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 SqlCommand cmStations = new SqlCommand();
 cmStations.Connection = con;
 cmStations.CommandType = CommandType.Text;
 cmStations.CommandText = "SELECT * FROM stations ORDER BY stationName ASC";

 SqlDataAdapter daStations = new SqlDataAdapter(cmStations);
 daStations.Fill(dsStations);
 con.Close();
 }

 catch
 {
 MessageBox.Show("File error");
 }
 }

We have added an instruction ‘ORDER BY stationName ASC’ to the SQL command, which will sort

the station records into alphabetical order of station name. This will be helpful later when the user

is selecting their journey.

Once the data has been loaded, it will be more convenient to transfer it into arrays ready for

processing. Set up four separate arrays for the stationID numbers, stationNames, and the X and Y

map cooordinates. We will also set up an integer variable stationCount to record the number of

stations for which we have data.

 public partial class Form1 : Form
 {
 string databaseLocation = "C:\\C#\\underground.mdf;";

 int stationCount;
 int[] stationID = new int[20];
 string[] stationName = new string[20];
 int[] stationX = new int[20];
 int[] stationY = new int[20];

 DataSet dsStations = new DataSet();

 public Form1()
 {
 InitializeComponent();
 GetStations();
 }

64 Programming with C#.NET

Add code to the GetStations() method to determine the number of stations, and then use a loop to

transfer the data for each station into the arrays:

 catch
 {
 MessageBox.Show("File error");
 }

 stationCount = dsStations.Tables[0].Rows.Count;

 for (int i = 0; i < stationCount; i++)
 {
 DataRow drStation = dsStations.Tables[0].Rows[i];

 stationID[i] = Convert.ToInt16(drStation[0]);
 stationName[i] = Convert.ToString(drStation[1]);
 stationX[i] = Convert.ToInt16(drStation[2]);
 stationY[i] = Convert.ToInt16(drStation[3]);
 }
 }

The next step is to write a method DrawMap() which will display the stations on screen as the basis

of a route diagram for the railway system. Add this below the GetStations() method:

 for (int i = 0; i < stationCount; i++)
 {
 DataRow drStation = dsStations.Tables[0].Rows[i];

 stationID[i] = Convert.ToInt16(drStation[0]);
 stationName[i] = Convert.ToString(drStation[1]);
 stationX[i] = Convert.ToInt16(drStation[2]);
 stationY[i] = Convert.ToInt16(drStation[3]);
 }
 }

 private void DrawMap()
 {
 Graphics g = this.CreateGraphics();
 Pen black = new Pen(Color.Black, 1);
 SolidBrush white = new SolidBrush(Color.White);
 Font font = new Font("FreightSans Medium", 7, FontStyle.Regular);

 for (int i = 0; i < stationCount; i++)
 {
 g.FillEllipse(white, stationX[i] - 5, stationY[i] - 5, 10, 10);
 g.DrawEllipse(black, stationX[i] - 5, stationY[i] - 5, 10, 10);
 g.DrawString(stationName[i], font, Brushes.Black,
 new Rectangle(stationX[i] + 3, stationY[i] + 2, 61, 50));
 }
 }

This code sets up black line and white fill colours, then draws a circle in the correct X, Y map position

for each station. The station name is then added as a caption.

 Chapter 6: London Underground 65

To make the graphics appear when the program runs, it is necessary to add a Paint() method to the

form. Change to the form design view, click to select Form1, then go to the Properties window. Click

the Events icon, checking that the alphabetical list icon is also selected:

Locate the ‘Paint’ event and double click in the right column to create a Form1_Paint method. Add

the DrawMap() method to this:

 private void Form1_Paint(object sender, PaintEventArgs e)

 {
 DrawMap();
 }

Run the program. The stations should be displayed in the pattern shown. If the complete map area
is not visible then close the program, return to the design view and enlarge the form. If any stations
appear in an incorrect position, go to the database table and check that the X and Y cooordinates
have been entered correctly.

66 Programming with C#.NET

The next task is to connect the stations along each Underground Line. We will need another table in

the database to record the sequence of stations along each line. Go to the Server Explorer window

and right click the Data Connections icon. Re-connect the underground.mdf database.

Right-click the Tables icon. Select ‘Add New Table’. Set up the primary key field as 'LineName', then

add ten integer fields to represent the sequence of stations along the route. These fields are named

‘Station1’ to ‘Station10’. For each of the station fields, remove the tick from Allow Nulls column and

set a Default value of 0.

Change the table name to ‘lines’. Click the ‘Update’ button and update the database.

Close the table design window. Click the refresh button in the top left corner of the Database

Explorer window. The 'lines' table should now appear in the list. Click right on the lines table icon

and select 'Show Table Data'. The empty table opens.

 Chapter 6: London Underground 67

We are going to enter data for four Underground Lines. Each row begins with the name of the line,

followed by the ID numbers of the stations along the line. These ID numbers were allocated by the

computer when you entered the station data earlier.

LineName Station1 Station2 Station3 Station4 Station5 Station6 Station7 Station8 Station9 Station10

Central 1 2 6 7 15 18 16 0 0 0

Northern 12 11 8 7 4 5 0 0 0 0

Circle 10 2 3 4 19 15 14 8 9 10

Victoria 13 11 9 6 4 19 17 0 0 0

Close the table when the data has been entered. Go to the Server Explorer window and delete the

connection to the underground.mdf database.

We need to load the data for the underground lines when the program runs. Add a DataSet to hold

the line data, and write a GetRailLines() method. This uses very similar code to the method for

loading the stations. You may save some time by copying code from GetStations(), then making the

necessary changes.

 DataSet dsStations = new DataSet();

 DataSet dsRailLines = new DataSet();

 public Form1()
 {
 InitializeComponent();
 GetStations();
 }

 private void GetRailLines()
 {
 try
 {
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" + databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 con.Open();
 SqlCommand cmRailLines = new SqlCommand();
 cmRailLines.Connection = con;
 cmRailLines.CommandType = CommandType.Text;
 cmRailLines.CommandText = "SELECT * FROM lines";

 SqlDataAdapter daRailLines = new SqlDataAdapter(cmRailLines);
 daRailLines.Fill(dsRailLines);
 con.Close();
 }

 catch
 {
 MessageBox.Show("File error");
 }
 }

68 Programming with C#.NET

When the program is running, we want the data for stations and underground lines to be easily

available to the program so that a map of the Underground system can be drawn and journeys

planned. It is best to hold the data in arrays in the fast electronic main memory of the computer,

the RAM, where it can be accessed almost instantly.

The station data has already been stored in a set of arrays:

These are parallel arrays. This means that if we choose data from the same row in each array, the

series of data items will all refer to the same station. For example, if we take row 4 of each array,

we know that the station with stationID = 4 is Euston, and its map cooordinates are Xpos = 409,

Ypos = 218.

Notice that the arrays we created for the station data have only one column each. These are called

one-dimensional arrays.

When we transfer the Underground Lines data into arrays, a different structure will be needed. We

can store the LineNames in a one-dimensional array, but the station ID numbers along each line will

need a two-dimensional array similar to a spreadsheet grid.

Once all the data is available in arrays, it is very easy for the computer to read the StationID

numbers in sequence along each of the lines, then go to the station data to obtain the name and

map coordinates for the station. For example: Station2 on the Central line has ID number 2 and is

therefore Notting Hill Gate. The map coordinates for this station are Xpos = 270, Ypos = 268.

 Chapter 6: London Underground 69

Set up variables near the start of the program to hold the names of the Underground Lines, and the

sets of stationID numbers along each line. Add a call to the GetRailLines() method:

 DataSet dsRailLines = new DataSet();

 int lineCount;
 string[] lineName = new string[6];
 int[,] stationNumber = new int[6, 12];

 public Form1()
 {
 InitializeComponent();
 GetStations();

 GetRailLines();
 }

Go to the end of the GetRailLines() method and add code to transfer the data into the arrays:

 catch

 {
 MessageBox.Show("File error");
 }

 lineCount = dsRailLines.Tables[0].Rows.Count;

 for (int i = 0; i < lineCount; i++)
 {
 DataRow drRailLine = dsRailLines.Tables[0].Rows[i];
 lineName[i] = Convert.ToString(drRailLine[0]);

 for (int j = 1; j < 11; j++)
 {
 stationNumber[i, j] = Convert.ToInt16(drRailLine[j]);
 }
 }
 }

We now have a lot of variables in use in the program, and it is worth taking the time to construct a

reference table, known as a Data Dictionary, to remind ourselves of the purpose of each of the

variables and the way that the array elements are accessed:

70 Programming with C#.NET

Variable Data type Purpose Examples

stationCount

integer The number of station records in
the database

stationCount = 19

stationID

int[20] One dimensional array storing
the stationID numbers allocated
to the stations.

stationID[1] = 1

stationID[19] = 19

stationName

string[20] One dimensional array storing
the names of the stations.

stationName[1]=“Ealing Broadway”

stationName[19]=”Kings Cross”

stationX

int[20] One dimensional array storing
the X (across) pixel position of
the station on the map

stationX[1] = 105

stationX[19] = 440

stationY

int[20] One dimensional array storing
the Y (down) pixel position of the
station on the map

stationY[1] = 269

stationY[19] = 218

lineCount

int The number of underground line
records in the database

lineCount = 4

lineName

string[6] One dimensional array storing
the names of the underground
lines.

lineName[1] = “Central”

stationNumber int[6, 12] Two dimensional array storing
the stationID values for stations
along each line. First index is the
line number. Second index is the
station sequence

stationNumber[2,3] = 8

(on underground line 2, the station
in position 3 along the line has a
stationID value of 8)

By use of the arrays it should be possible to find the sequence of stationIDs along any underground

line, then use these stationID values to find the corresponding station names and map coordinates.

We can therefore proceed to draw our route map:

Set up a method called DrawRailLines() below the DrawMap() method. Add a call to this method

in Form1_Paint().

We are going to draw the railway map as a series of straight line sections linking pairs of stations.

Each line section will begin at the point (startX, startY) and end at the point (endX,endY).

We will set up pen colours to represent the offical colour codes given to the London Underground

Lines:

 Central Line: red Northern Line: black

 Circle Line: yellow Victoria Line: light blue

The purpose of the FillRectangle command is to produce a white background for the map area.

 Chapter 6: London Underground 71

private void DrawRailLines()
 {
 int startX;
 int startY;
 int endX;
 int endY;

 Graphics g = this.CreateGraphics();
 Pen white = new Pen(Color.White, 1);
 Pen blackW = new Pen(Color.Black, 3);
 Pen goldW = new Pen(Color.Gold, 5);
 Pen blueW = new Pen(Color.DeepSkyBlue, 3);
 Pen redW = new Pen(Color.Red, 3);

 g.FillRectangle(white.Brush, new Rectangle(0, 0, 800, 600));
 }

 private void Form1_Paint(object sender, PaintEventArgs e)
 {
 DrawRailLines();

 DrawMap();
 }

We now add a loop to DrawRailLines() which will repeat for each underground line, and within this

a loop which will repeat for each pair of stations. We collect the stationIDs for the stations:

 Pen blueW = new Pen(Color.DeepSkyBlue, 3);
 Pen redW = new Pen(Color.Red, 3);
 g.FillRectangle(white.Brush, new Rectangle(0, 0, 800, 600));

 for (int i = 0; i < lineCount; i++)
 {
 for (int j = 1; j < 11; j++)
 {
 int firstStationID = stationNumber[i, j];
 int secondStationID = stationNumber[i, j + 1];
 if (secondStationID > 0)
 {
 }
 }
 }

We will use the stationIDs to find the map coordinates for each pair of stations, then connect them

with a line of the correct colour. For example:

 Central line

 Station 1 Station 2

 stationID = 1: Ealing Broadway stationID = 2: Notting Hill Gate

map coordinates Xpos = 105, Ypos = 269 Xpos = 270, Ypos = 268

72 Programming with C#.NET

Add lines of code. These use the stationIDs to find the map coordinates for these stations:

 for (int j = 1; j < 11; j++)
 {
 int firstStationID = stationNumber[i, j];
 int secondStationID = stationNumber[i, j + 1];
 if (secondStationID > 0)
 {
 startX = 0;
 startY = 0;
 endX = 0;
 endY = 0;
 for (int s = 0; s < stationCount; s++)
 {
 if (firstStationID == stationID[s])
 {
 startX = stationX[s];
 startY = stationY[s];
 }
 if (secondStationID == stationID[s])
 {
 endX = stationX[s];
 endY = stationY[s];
 }
 }
 }
 }

The final step is to draw a line between each pair of stations, using the correct colour for the

particular London Underground Line:

 for (int s = 0; s < stationCount; s++)
 {

 if (firstStationID == stationID[s])
 {
 startX = stationX[s];
 startY = stationY[s];
 }
 if (secondStationID == stationID[s])
 {
 endX = stationX[s];
 endY = stationY[s];
 }
 }

 if (lineName[i] == "Circle")
 g.DrawLine(goldW, startX, startY, endX, endY);
 if (lineName[i] == "Northern")
 g.DrawLine(blackW, startX, startY, endX, endY);
 if (lineName[i] == "Victoria")
 g.DrawLine(blueW, startX, startY, endX, endY);
 if (lineName[i] == "Central")
 g.DrawLine(redW, startX, startY, endX, endY);
 }

 Chapter 6: London Underground 73

Run the program, and the railway map should be displayed with the stations connected as shown,

using the correct line colours. If any stations are not connected correctly, go to the database to

check that the stationID numbers have been allocated to stations correctly, and that the stationIDs

appear in the correct sequence along each rail line.

Return to the Form1 design screen and add components to the top right hand corner of the form,

beyond the edge of the map, as shown. You will need to extend the form sideways quite a long way

to make space for this.

label: label1

comboBox: cmbFrom

label: label2

comboBox: cmbTo

button: btnClear

listBox: listBox1

button: btnRoute

74 Programming with C#.NET

These components will provide a user interface for entering the start and destination stations, and

for displaying the route found.

We will give the user the choice of selecting the start and destination stations from drop down

alphabetical lists, or by clicking the required stations on the route map.

To produce the drop down lists, go to the GetStations() method. Near the end of the method, add

two lines of code to load the station lists into the comboBoxes:

 for (int i = 0; i < stationCount; i++)
 {
 DataRow drStation = dsStations.Tables[0].Rows[i];

 stationID[i] = Convert.ToInt16(drStation[0]);
 stationName[i] = Convert.ToString(drStation[1]);
 stationX[i] = Convert.ToInt16(drStation[2]);
 stationY[i] = Convert.ToInt16(drStation[3]);

 cmbFrom.Items.Add(stationName[i]);
 cmbTo.Items.Add(stationName[i]);
 }
 }

Run the program and check that the station names are listed in the comboBoxes and can be selected

by mouse click. If necessary, move the components further to the right so they do not overlap the

map.

A slight problem, easily corrected, is that the map redraws each time a comboBox is clicked, causing

the screen to flicker. Go to the top of the program listing and add a Boolean (true/false) variable:

 public partial class Form1 : Form
 {
 string databaseLocation = "C:\\C#\\underground.mdf;";

 bool loading = true;

 Chapter 6: London Underground 75

Add code to the Form1_Paint() method to ensure that the map is only drawn once, at the time
when the program first starts:

 private void Form1_Paint(object sender, PaintEventArgs e)
 {
 if (loading == true)
 {

 DrawRailLines();
 DrawMap();

 loading = false;
 }
 }

Double click the 'Clear' button to create an on_click method, then add code to clear the entries in

the comboBoxes and listBox.

 private void btnClear_Click(object sender, EventArgs e)
 {
 cmbFrom.Text = "";
 cmbTo.Text = "";
 listBox1.Items.Clear();
 }

Run the program to check that the Clear button functions correctly.

We can now work on the code to select stations by clicking the route map. Begin by selecting

Form1 and going to the Properties window. Change to ‘Events’ and double click to create a

‘MouseDown’ method:

Add code to the Form1_MouseDown() method to find the X and Y position when the mouse is

clicked on the form.

 private void Form1_MouseDown(object sender, MouseEventArgs e)
 {
 int X = Cursor.Position.X;
 int Y = Cursor.Position.Y;
 Point p = new Point(X, Y);

 p = PointToClient(p);
 }

76 Programming with C#.NET

We then use the X and Y cooordinates to look for a station close to this position on the map. The

program checks for station cooordinates within 5 pixels of the mouse pointer when the mouse is

clicked.

If the first comboBox, recording the starting location, is currently empty then the station name is

entered in this box; otherwise it is entered into the second comboBox as the destination.

 private void Form1_MouseDown(object sender, MouseEventArgs e)
 {
 int X = Cursor.Position.X;
 int Y = Cursor.Position.Y;
 Point p = new Point(X, Y);
 p = PointToClient(p);

 for (int i = 0; i < stationCount; i++)
 {
 if (Math.Abs(stationX[i] - p.X) < 5 && Math.Abs(stationY[i] - p.Y) < 5)
 {
 if (cmbFrom.Text == "")
 {
 cmbFrom.Text = stationName[i];
 }
 else
 {
 cmbTo.Text = stationName[i];
 }
 }
 }
 }

Run the program and check that stations can be selected correctly by clicking on the route map:

 Chapter 6: London Underground 77

If the user interface is working correctly, we can now begin work on the route finding algorithm.

Close the program and go to the Form1 design view. Double click the ‘find route’ button to produce

a btnRoute_Click() method. Add lines of code to collect the names of the departure and destination

stations from the comboBoxes and redisplay these in the listBox:

 private void btnRoute_Click(object sender, EventArgs e)
 {
 string startStation = cmbFrom.Text;
 string endStation = cmbTo.Text;

 listBox1.Items.Clear();
 listBox1.Items.Add("Travelling from: " + startStation);
 listBox1.Items.Add("");
 listBox1.Items.Add("Travelling to: " + endStation);
 }

Run the program and check that the station names are transferred to the ListBox correctly. Increase

the width of the List Box if necessary, so that the station names are fully visible.

Close the program and return to the C# code page.

We will set up some small methods which will be useful during the route finding process. The first

will take the name of a station and convert it to the equivalent stationID number. Insert this

method above the btnRoute_click() method:

 private int getStationID(string stationNameWanted)
 {
 int stationIDfound = 0;
 for (int i = 0; i < stationCount; i++)
 {
 if (stationNameWanted == stationName[i])
 {
 stationIDfound = stationID[i];
 }
 }
 return stationIDfound;
 }

78 Programming with C#.NET

Below this we will make another method to do exactly the opposite task, taking a stationID number

and converting this to the equivalent station name:

 private string getStationName(int stationIDwanted)
 {
 string stationNameFound = "";
 for (int i = 0; i < stationCount; i++)
 {
 if (stationIDwanted == stationID[i])
 {
 stationNameFound = stationName[i];
 }
 }
 return stationNameFound;
 }

We need to add one more method to check whether a particular station is present on a particular

underground line. This will return a result of ‘true’ if the station is on the line, and ‘false’ if it is not:

 private bool stationOnLine(int lineNumber, int stationIDwanted)
 {
 bool found = false;
 for (int j = 1; j < 11; j++)
 {
 if (stationNumber[lineNumber, j] == stationIDwanted)
 {
 found = true;
 }
 }

 return found;
 }

Now that we have some useful tools available, we can continue with the route finding procedure.

We know the names of the start and destination stations, so we can use the getStationID() method

to find the equivalent stationIDs. Add lines of code to the btnRoute_Click() method.

 listBox1.Items.Clear();

 listBox1.Items.Add("Travelling from: " + startStation);

 listBox1.Items.Add("");

 listBox1.Items.Add("Travelling to: " + endStation);

 int startStationID = getStationID(startStation);

 int endStationID = getStationID(endStation);

 Chapter 6: London Underground 79

If the stationIDs of both the start and destination stations are present on the same underground

line, then it will be possible to make the journey without changing train. We will add code to the

btnRoute_Click() method to check for this possibility, making use of the stationOnLine() method:

 int startStationID = getStationID(startStation);

 int endStationID = getStationID(endStation);

 bool startFound, endFound;

 string undergroundLine;

 bool directRoute = false;

 for (int lineNumber = 0; lineNumber < lineCount; lineNumber++)

 {

 undergroundLine = lineName[lineNumber];

 startFound = stationOnLine(lineNumber, startStationID);

 endFound = stationOnLine(lineNumber, endStationID);

 if (startFound == true && endFound == true)

 {

 listBox1.Items.Add("");
 listBox1.Items.Add("Travel direct on the " + undergroundLine + " Line");

 directRoute = true;

 }

 }

Run the program and test various routes where direct travel is possible:

80 Programming with C#.NET

We can now examine the more complicated situation where a change of train is necessary.

If no direct route is found then the following strategy will be adopted:

 1.LOOP for each underground line

 2. LOOP to find if the start station is on this line. IF it is…

 3.LOOP for each station along the line – this is potentially a station to change trains

 4.LOOP for each other underground line

 5.IF the change station AND the destination station are on this line THEN

 a route has been found:

 Display the start line

 Display the change station

 Display the destination line

We will begin by adding loops 1 and 2, to check each underground line to see if it contains the start

station:

 {

 listBox1.Items.Clear();

 listBox1.Items.Add("Travel direct on the "+undergroundLine+" Line");

 directRoute = true;

 }

 }

 if (directRoute == false)

 {

 for (int firstLine = 0; firstLine < lineCount; firstLine++)

 {

 string startUndergroundLine = lineName[firstLine];

 startFound = stationOnLine(firstLine, startStationID);

 }

 }

If startFound is set to true, then we have found an underground line serving the station where the

traveller wishes to start their journey.

 Chapter 6: London Underground 81

We will now consider each of the other stations along this line (loop 3 in the algorithm above), as it

might be a possible point to change to a different underground line serving the destination.

 for (int firstLine = 0; firstLine < lineCount; firstLine++)

 {

 string startUndergroundLine = lineName[firstLine];

 startFound = stationOnLine(firstLine, startStationID);

 if (startFound == true)

 {

 for (int j = 1; j < 11; j++)

 {

 if (stationNumber[firstLine, j] > 0)

 {

 int changeStation = stationNumber[firstLine, j];

 }

 }

 }

 }

We can now check each other underground line to see if the change station and destination are

both on that line (loops and conditionals 4 and 5 in the algorithm above):

 int changeStation = stationNumber[firstLine, j];

 for (int secondLine = 0; secondLine < lineCount; secondLine++)

 {

 if (secondLine != firstLine)

 {

 undergroundLine = lineName[secondLine];

 bool destination = stationOnLine(secondLine, endStationID);

 bool change = stationOnLine(secondLine, changeStation);

 if (destination==true && change==true)

 {

 string changeStationName=getStationName(changeStation);

 listBox1.Items.Add("");

 listBox1.Items.Add("Travel on the "+startUndergroundLine+" Line");

 listBox1.Items.Add("change at " + changeStationName);

 listBox1.Items.Add("to the " + undergroundLine + " Line");

 }

 }

 }

82 Programming with C#.NET

Test the completed program, which should now give correct travel options between any starting

station and destination. If more than one route is possible, each will be displayed.

Some programming challenges…

 If more than one route is possible, how could the program select the route through the least

number of stations?

 How could the program be developed to include more stations and additional underground

lines?

 For a more complex system, more than one change of train might be needed. How could

the algorithm be developed to allow for two changes of train?

