
 Chapter 7: Estate Agent Database 83

7 Estate Agent Database

The next program is a complete database application for an Estate Agent, handling

properties for sale and customers wishing to find suitable properties. We will look at how

C# .NET can display existing records, add new records to the database, update records and

delete records, as well as carrying out queries to find suitable properties for particular

customers.

Go to the Server Explorer window and right-click on Data Connection to set up a new

connection. Select Microsoft SQL Server Database File as the Data source.

Use the Browse button to select a drive and folder location, then create a database called

‘estateAgent’.

84 Programming with C#.NET

Right-click the Tables icon to add a new table to the database. This table will store details of

houses for sale.

Add fields to the table as shown. The fields ‘propertyType’, ’location’ and ‘land’ will be code

numbers representing different property descriptions.

We will set the ‘houseID’ to be an auto-number generated by the database.

Select the ‘houseID’ field. Go to the Properties window and locate ‘Identity Specification’. Click the

‘plus’ symbol to the left to open further options, then set ‘(Is Identity)’ to ‘True’.

v

Name the table as ‘house’ in the SQL window below the list of fields.

 Chapter 7: Estate Agent Database 85

Select the 'Update' option above the list of fields, then click the 'Update database' button.

Close the table by clicking the small cross on the tab.

Repeat the sequence of steps above to create another table in the database. This will store details

of customers and their requirements. Add the fields shown:

Set the customerID field to be an auto-number by setting ‘Identity Specification / (Is Identity)’ to

‘True’.

Change the table name to ‘customer’ in the SQL panel. Click 'Update' to save, then close the table

by clicking the cross icon above the table window.

86 Programming with C#.NET

We can now begin the C# program which will access the database. Select ‘New Project’. Choose

‘Windows Forms Application’, and set the program name to ‘estateAgent’.

Click 'OK'to create Form1.

We will set up a menu across the top of Form1 which can be used to select the various program

options. Click ‘MenuStrip’ in the 'Menus & Toolbars' section of the Toolbox, then drag the mouse to

attach the menu to the top of the form.

The menu system is started by typing in the box which is displayed. As each menu item is entered,

additional boxes appear alongside and below for use if required.

 Chapter 7: Estate Agent Database 87

Build up the series of menu options shown below, by typing captions into the required boxes:

Double click the ‘Exit’ menu option. An event handling method will be created. Add the line of code

which will close the program.

namespace estateAgent

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private void exitToolStripMenuItem_Click(object sender, EventArgs e)

 {

 this.Close();

 }

 }

Go to the Solution Explorer window and right click the ‘estateAgent’ icon. Select ‘Add / New item’.

Choose ‘Windows Form’, and set the name to ‘DisplayHouses’.

88 Programming with C#.NET

We will link this form to the menu. Double click the ‘Display Houses’ option to create an event

handling method:

Add lines of code to open the DisplayHouses form:

 private void exitToolStripMenuItem_Click(object sender, EventArgs e)

 {

 this.Close();

 }

 private void displayHousesToolStripMenuItem_Click(object sender, EventArgs e)

 {

 DisplayHouses frmDisplayHouses = new DisplayHouses();

 frmDisplayHouses.ShowDialog();

 }

Run the program and check that the ‘Display Houses’ and ‘Exit’ menu options operate correctly.

We can now start to work on the DisplayHouses form. This will show a list of houses for sale.

Add a listBox component to the form, and set the font size of the listBox to 10pt. Also add a ‘Close’

button and rename this a btnClose.

 Chapter 7: Estate Agent Database 89

Double click the Close button, then a line of code to event handling method:

namespace estateAgent
{
 public partial class DisplayHouses : Form
 {

 public DisplayHouses()
 {
 InitializeComponent();
 }

 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }
 }
}

We can now set up a method to load details of houses for sale. Using similar code to previous

programs, we will:

 Add a ‘using SqlClient’ directive.

 Specify the database location.

 Set up an empty loadAddresses() method. This will contain the program code to load house

records from the database.

 Create a dataSet to receive the house data when it is loaded.

 Call the loadAddresses() method from DisplayHouses(), so that house records are loaded

when the form opens.

using System.Text;
using System.Windows.Forms;

using System.Data.SqlClient;

namespace estateAgent
{
 public partial class DisplayHouses : Form
 {
 string databaseLocation = "C:\\C#\\estateAgent.mdf;";

 public DisplayHouses()
 {
 InitializeComponent();
 loadAddresses();
 }

 DataSet dsHouses = new DataSet();

 public void loadAddresses()
 {

 }

 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }

90 Programming with C#.NET

We will add code to load the house records, again closely following the pattern of previous

programs. Remember that the line beginning:

 SqlConnection con = new SqlConnection(…

must be entered as a single line of code with no line breaks.

 public void loadAddresses()

 {
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" + databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");

 try
 {
 con.Open();
 SqlCommand cmHouses = new SqlCommand();
 cmHouses.Connection = con;
 cmHouses.CommandType = CommandType.Text;
 cmHouses.CommandText = "SELECT * FROM house";

 SqlDataAdapter daHouses = new SqlDataAdapter(cmHouses);
 daHouses.Fill(dsHouses);
 con.Close();
 }
 catch
 {
 MessageBox.Show("File error");
 }
 }

Once the house data has been transferred to the dataSet, we will use a loop to access each record,

picking out the address fields for display in the list box:

 SqlDataAdapter daHouses = new SqlDataAdapter(cmHouses);
 daHouses.Fill(dsHouses);
 con.Close();

 int countRecords = dsHouses.Tables[0].Rows.Count;

 for (int i = 0; i < countRecords; i++)
 {
 DataRow drHouse = dsHouses.Tables[0].Rows[i];
 string houseAddress = drHouse[1] + ", " + drHouse[2];
 listBox1.Items.Add(houseAddress);
 }
 }

Before testing the program, it will be necessary to enter sample house data. Go to the Server

Explorer, double click the ‘house’ table icon, then select ‘Show Table Data’.

 Chapter 7: Estate Agent Database 91

Add example test data to the table. The values for propertyType, location and land are code

numbers which will be explained shortly.

Close the house table. Select 'estateAgent.mdf' in the Server Explorer window, right-click and use

the Delete option to delete the data connection. This must be done before the program is run.

Run the program. Select the menu option to display houses. The house addresses should appear in

the listBox on the DisplayHouses form:

When a user clicks on one of the house addresses, we will arrange for full details of the property to

be displayed.

Go to the Solution Explorer window, right-click the ‘estateAgent’ program icon, and select ‘Add /

New item’. Set up a Windows Form with the name ‘HouseDetails’.

92 Programming with C#.NET

The new HouseDetails form will open. Right-click on the form and select 'View code'. Add an empty

method called getHouseDetails(). This will be used to collect and display full information about a

selected house.

namespace estateAgent
{
 public partial class HouseDetails : Form
 {
 public HouseDetails()
 {
 InitializeComponent();
 }

 public void getHouseDetails(DataRow drHouse)
 {

 }

 }
 }

Return to DisplayHouses form and select the Design view. Click to select the listBox on the form. Go

to the Properties window and click the Events icon. Identify the MouseClick event in the list, then

double click to create an event handler:

Add lines of code to the listBox1_mouseClick() method

 private void listBox1_MouseClick(object sender, MouseEventArgs e)
 {
 HouseDetails frmHouseDetails = new HouseDetails();
 int houseSelected = listBox1.SelectedIndex;
 DataRow drHouseWanted = dsHouses.Tables[0].Rows[houseSelected];

 frmHouseDetails.getHouseDetails(drHouseWanted);
 frmHouseDetails.ShowDialog();
 this.Close();
 }

 Chapter 7: Estate Agent Database 93

When a house address is clicked in the listBox, this method will carry out a series of tasks:

 It will find the position in the list of the selected house.

 It will collect the corresponding house record from the dataSet.

 It will then transfer the house record to the HouseDetails form where it can be displayed.

Run the program and check that the HouseDetails window opens correctly when a house address is

clicked in the listBox. The actual details of the house are not yet displayed.

Close the program and open the HouseDetails form, where we will display the house data.

The first item to show is the HouseID. Unlike other details of the house, this field should not be

editable. We will therefore display it with a Label component. Give this the name ‘lblHouseID’.

Add the text ‘X’ for the label at this stage. This will be replaced by the actual houseID when the

program runs.

94 Programming with C#.NET

Continue to build the display screen by adding labels and textBoxes. The textBoxes should be

renamed as: txtAddress1, txtAddress2, txtPrice, txtBedrooms:

Insert a ComboBox component for the houseType field. We will provide a drop down list of house

types. To do this, select the comboBox and go to the Properties window. Find ‘Items’ and click to

open a String Editor window. Enter the list of house types as shown, then click the OK button.

 Chapter 7: Estate Agent Database 95

Add a comboBox for Location, and enter the list of location options:

Add a comboBox for the ‘Land included’ field and enter the options for the drop down list

Complete the form by adding three buttons for the options ‘close’, ‘save changes’ and ‘delete

record’. Name the buttons as btnClose, btnUpdate and btnDelete.

96 Programming with C#.NET

Return to the program listing for the HouseDetails form and add lines of code to the

getHouseDetails() method. This method receives the selected house record from the previous form

as the parameter drHouse. The inidvidual fields are extracted from the record, then displayed in the

textBoxes or comboBoxes:

 public partial class HouseDetails : Form
 {
 public HouseDetails()
 {
 InitializeComponent();
 }

 public void getHouseDetails(DataRow drHouse)
 {
 lblHouseID.Text = Convert.ToString(drHouse[0]);
 txtAddress1.Text = Convert.ToString(drHouse[1]);
 txtAddress2.Text = Convert.ToString(drHouse[2]);
 txtPrice.Text = String.Format("{0:0,0}", drHouse[3]);
 txtBedrooms.Text = Convert.ToString(drHouse[4]);
 comboBox1.SelectedIndex = Convert.ToInt16(drHouse[5]) - 1;
 comboBox2.SelectedIndex = Convert.ToInt16(drHouse[6]) - 1;
 comboBox3.SelectedIndex = Convert.ToInt16(drHouse[7]) - 1;
 }

Run the program. Go to the ‘Display Houses’ menu option, then select a house. The House Details

form should open to display the full set of fields for the house record:

‘House Type’, ‘Location’ and ‘Land included’ are stored in the house record as code numbers, e.g.

detached house = 1, semi-detached house=2, ... These values are used to select the appropriate list

item for display in each of the comboBoxes.

 Chapter 7: Estate Agent Database 97

Close the program windows and return to the program listing for the HouseDetails page. We will

now turn our attention to updating the house record if the user wishes to change any of the details.

Add a ‘using SqlClient’ directive at the start of the program, and specify the location of the database:

using System.Text;
using System.Windows.Forms;

using System.Data.SqlClient;

namespace estateAgent
{
 public partial class HouseDetails : Form
 {
 string databaseLocation = "C:\\C#\\estateAgent.mdf;";

 public HouseDetails()
 {
 InitializeComponent();
 }

Double click the ‘save changes’ button to create a btnUpdate_Click() method.

Add lines of program code which will take the values from the textBoxes and comboBoxes and store

them temporarily as variables of the correct data type, ready for updating the house record. We will

also add the lines of code for connection to the database:

 private void btnUpdate_Click(object sender, EventArgs e)
 {
 int HouseID = Convert.ToInt16(lblHouseID.Text);
 string Address1 = txtAddress1.Text;
 string Address2 = txtAddress2.Text;
 double Price = Convert.ToDouble(txtPrice.Text);
 int Bedrooms = Convert.ToInt16(txtBedrooms.Text);
 int Housetype = comboBox1.SelectedIndex + 1;
 int Location = comboBox2.SelectedIndex + 1;
 int Land = comboBox3.SelectedIndex + 1;

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");

The addition of 1 to the comboBox index values comes about because items in a comboBox are

numbered from zero, whereas it is more sensible for our code numbers to begin at 1. For example,

in the ‘Location’ field:

 town = code 1 town = listBox item 0

 village = code 2 village = listBox item 1

 etc…

98 Programming with C#.NET

We can now add the code to open the database and update the house record. This is similar to the

code which we have written previously to load data, but this time makes use of an UPDATE

command in SQL.

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");

 try
 {
 con.Open();
 SqlCommand cmHouses = new SqlCommand();
 cmHouses.Connection = con;
 cmHouses.CommandType = CommandType.Text;
 cmHouses.CommandText = "UPDATE house SET address1='"+ Address1
 + "', address2='"+ Address2 + "', price='" + Price + "', bedrooms='"
 + Bedrooms + "', propertyType='" + Housetype + "', location='"
 + Location + "', land='" + Land + "' WHERE houseID='" + HouseID + "'";
 cmHouses.ExecuteNonQuery();
 con.Close();
 this.Close();
 }
 catch
 {
 MessageBox.Show("File error");
 }
 }

Run the program. Select a house and make some changes to the details, such as the address, price

or land included. Click ‘save changes’.

Return to the list of properties for sale. Click the house address to reopen the HouseDetails form.

Check that your changes were made correctly. Close the program windows and return to the

program listing for the HouseDetails page.

If all is well, we can now program the ‘delete record’ option. It is important to give the user an

option to cancel if they have clicked the ‘delete record’ button by accident. We will do this by

making a message box appear before the record is actually deleted from the database.

Double click the ‘delete record’ button to create an event method, then add code to open a message

box:

 private void btnDelete_Click(object sender, EventArgs e)
 {
 if (MessageBox.Show("Really delete?", "Confirm delete",
 MessageBoxButtons.YesNo) == DialogResult.Yes)
 {

 }
 }

 Chapter 7: Estate Agent Database 99

Run the program. Select a house, then click the ‘delete record’ button. Check that the confirm

message appears. Close the program and return to the program listing for the HouseDetails page.

We will now add the code which will actually delete the record from the database if the user

answers ‘Yes’. This is again very similar to previous database code we have written, but this time

uses the DELETE command in SQL. The correct record for deletion is selected by means of the

houseID value.

 private void btnDelete_Click(object sender, EventArgs e)
 {
 if (MessageBox.Show("Really delete?", "Confirm delete",
 MessageBoxButtons.YesNo) == DialogResult.Yes)
 {
 int HouseID = Convert.ToInt16(lblHouseID.Text);

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" + databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");

 try
 {
 con.Open();
 SqlCommand cmHouses = new SqlCommand();
 cmHouses.Connection = con;
 cmHouses.CommandType = CommandType.Text;
 cmHouses.CommandText = "DELETE house WHERE houseID='" + HouseID + "'";
 cmHouses.ExecuteNonQuery();
 con.Close();
 this.Close();
 }
 catch
 {
 MessageBox.Show("File error");
 }
 }
 }

100 Programming with C#.NET

The final operation we need to carry out on the ‘house’ table is to add new records. We will

postpone testing the ‘delete record’ option until this 'add record' function has been completed.

We will require another Windows Form where house details can be entered. Go to the Solution

Explorer window and right-click on the estateAgent program icon. Select ‘Add / New item’. Choose

‘Windows Form’, and give the name ‘AddHouse’:

Open the AddHouse form and add labels, textBoxes and comboBoxes to create a data entry form.

You may find it easiest to copy and paste the required group of components from the HouseDetails

form which you set up earlier. Buttons will be required to cancel or save the house record:

Name the buttons as btnCancel and btnSave.

 Chapter 7: Estate Agent Database 101

Return to Form1 and link the AddHouse form to the menu system by double clicking the ‘Add House

Record' menu option:

Add lines of code to open the AddHouse form:

 private void displayHousesToolStripMenuItem_Click(object sender, EventArgs e)
 {
 DisplayHouses frmDisplayHouses = new DisplayHouses();
 frmDisplayHouses.ShowDialog();
 }

 private void addHouseRecordToolStripMenuItem_Click(object sender, EventArgs e)
 {
 AddHouse frmAddHouse = new AddHouse();
 frmAddHouse.ShowDialog();
 }

Return to the ‘AddHouse’ form. Double click the 'cancel' button to create an event procedure and

add the Close() command.

Go to the start of the program listing and insert the ‘using SqlClient’ directive and the database

location.

using System.Text;
using System.Windows.Forms;

using System.Data.SqlClient;

namespace estateAgent
{
 public partial class AddHouse : Form
 {
 string databaseLocation = "C:\\C#\\estateAgent.mdf;";

 public AddHouse()
 {
 InitializeComponent();
 }

 private void btnCancel_Click(object sender, EventArgs e)
 {
 this.Close();
 }
 }
}

102 Programming with C#.NET

Double click the ‘save house record’ button to prouce an event method.

Add code which will collect the required data from the textBoxes and comboBoxes, ready for

transfer to a database record. We will also set up the connection to the database.

 private void btnCancel_Click(object sender, EventArgs e)
 {
 this.Close();
 }

 private void btnSave_Click(object sender, EventArgs e)
 {
 string Address1 = txtAddress1.Text;
 string Address2 = txtAddress2.Text;
 double Price = Convert.ToDouble(txtPrice.Text);
 int Bedrooms = Convert.ToInt16(txtBedrooms.Text);
 int Housetype = comboBox1.SelectedIndex + 1;
 int Location = comboBox2.SelectedIndex + 1;
 int Land = comboBox3.SelectedIndex + 1;
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" + databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");

 }

We then add the code to save the new record into the database. This uses the INSERT command in

SQL. Notice that no value is included for the houseID field. We specified this as an auto-number

field, so the value will be allocated automatically by the database.

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" + databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");

 try
 {
 con.Open();
 SqlCommand cmHouses = new SqlCommand();
 cmHouses.Connection = con;
 cmHouses.CommandType = CommandType.Text;
 cmHouses.CommandText = "INSERT INTO house(address1, address2, price,
 bedrooms, propertyType, location, land)
 VALUES ('" + Address1 + "','" + Address2 + "','" + Price + "','"
 + Bedrooms + "','" + Housetype + "','" + Location + "','"
 + Land + "')";
 cmHouses.ExecuteNonQuery();
 con.Close();
 Close();
 }
 catch
 {
 MessageBox.Show("File error");
 }

Please not that the lines beginning

 SqlConnection con = new SqlConnection(…

 cmHouses.CommandText = "INSERT INTO…

should each be entered as a single line of code with no line breaks.

 Chapter 7: Estate Agent Database 103

Run the program and check that a new house record can be added correctly to the ‘house’ table.

Click the house list to display the record details. Check that the new record can then be deleted by

clicking the 'delete record' button.

We have now completed the houses section of the database program, and can turn our attention to

the customers of the Estate Agent.

When registering with the company, potential buyers will be asked to specify the maximum price

they are willing to pay for a property, the minimum number of bedrooms which they require, and

any preferences concerning the type of property, location or land included. This information can be

used by the Estate Agent to select suitable properties which might be of interest to the customer.

Add a Windows Form and give this the name ‘AddCustomer’. It will be used for entering details to

create new customer records.

Add textBoxes as show below, naming these as txtSurname, txtForename, txtMaxprice and

txtMinbeds.

Add comboBoxes for ‘House type wanted’, ‘Location wanted’, and ‘Land wanted’. Buttons will be

needed for ‘cancel’ and ‘save customer record’ options. Name these as btnCancel and btnSave.

104 Programming with C#.NET

We need to enter options for the comboBox drop down lists. These will list the property types,

locations and land descriptions in a similar way to the house records, but we will also include a NO

PREFERENCE option at the start of each list. If the customer specifies ‘no preference’, for example in

house type, then this field will be ignored when searching for suitable properties.

Select each of the comboBoxes in turn, then go to the Properties window and click to the right of

Items to open the String Collection Editor. Enter the option lists as shown below

Return to Form1. Link the ‘AddCustomer’ form to the menu system by double clicking the ‘Add

Customer Record’ menu option and adding lines of code to the event method:

 private void addHouseRecordToolStripMenuItem_Click(object sender, EventArgs e)
 {
 AddHouse frmAddHouse = new AddHouse();
 frmAddHouse.ShowDialog();
 }

 private void addCustomerRecordToolStripMenuItem_Click(object sender, EventArgs e)
 {
 AddCustomer frmAddCustomer = new AddCustomer();
 frmAddCustomer.ShowDialog();
 }

 Chapter 7: Estate Agent Database 105

Double click the ‘save customer record’ button to create an event method. Add code to transfer

data from the textBoxes and comboBoxes into variables, ready for saving to the database. Go to the

top of the progam listing, and add the ‘using SqlClient’ directive and the database location.

using System.Text;
using System.Windows.Forms;

using System.Data.SqlClient;

namespace estateAgent
{
 public partial class AddCustomer : Form
 {
 string databaseLocation = "C:\\C#\\estateAgent.mdf;";

 public AddCustomer()
 {
 InitializeComponent();
 }

 private void btnSave_Click(object sender, EventArgs e)
 {
 string Surname = txtSurname.Text;
 string Forename = txtForename.Text;
 double Maxprice = Convert.ToDouble(txtMaxprice.Text);
 int Minbedrooms = Convert.ToInt16(txtMinbeds.Text);
 int Typewanted = comboBox1.SelectedIndex;
 int Locationwanted = comboBox2.SelectedIndex;
 int Landwanted = comboBox3.SelectedIndex;

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");

 }

The final step is to save the record to the database. Add code to carry out the INSERT command in

SQL. Notice again that the auto-number field CustomerID is not included in the list of values:

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");

 try
 {
 con.Open();
 SqlCommand cmCustomers = new SqlCommand();
 cmCustomers.Connection = con;
 cmCustomers.CommandType = CommandType.Text;
 cmCustomers.CommandText =
 "INSERT INTO customer(surname, forename, maxprice, minbeds, typeWanted,
 locationWanted, landWanted) VALUES ('" + Surname + "','" + Forename
 + "','" + Maxprice + "','" + Minbedrooms + "','" + Typewanted
 + "','" + Locationwanted + "','" + Landwanted + "')";
 cmCustomers.ExecuteNonQuery();
 con.Close();
 this.Close();
 }
 catch
 {
 MessageBox.Show("File error");
 }

 }

106 Programming with C#.NET

Run the program. Enter test data for customers:

Surname Forename Max price Min beds House type Location Land

Jenkins Aled 180,000 3 No preference No preference No preference

Humphries Stuart 400,000 2 No preference Village Large garden

Andrews Ian 600,000 3 No preference No preference Agricultural

Edwards Elisabeth 500,000 2 Detached No preference No preference

Pritchard Tom 550,000 2 Bungalow Village No preference

Go to the Server Explorer and check that the records have been inserted into the ‘customer’ table.

Notice that the preferences for house type, location and land will be shown as code numbers, with

zero representing ‘NO PREFERENCE’. The customerID values have been allocated automatically.

Correct any errors in the table, then right-click on the 'Data Connections' icon and delete the

connection.

We will now produce a customer display option. Add a new Windows Form and give this the name

‘DisplayCustomers’. Go to Form1 and link the new form to the ‘Display Customers’ menu option:

 private void addCustomerRecordToolStripMenuItem_Click(object sender, EventArgs e)
 {
 AddCustomer frmAddCustomer = new AddCustomer();
 frmAddCustomer.ShowDialog();
 }

 private void displayCustomersToolStripMenuItem_Click(object sender, EventArgs e)
 {
 DisplayCustomers frmDisplayCustomers = new DisplayCustomers();
 frmDisplayCustomers.ShowDialog();
 }

Add a list box to the DisplayCustomers form, and set the font size to 10 point. Add a 'Close' button.

 Chapter 7: Estate Agent Database 107

We will add code to the DisplayCustomers form to include the ‘using SqlClient’ directive and specify

the database location. Create an empty loadCustomerNames() method, and call this from the

DisplayCustomers() method. Produce a dataSet to hold the customer records when they are

loaded.

using System.Text;
using System.Windows.Forms;

using System.Data.SqlClient;

namespace estateAgent
{
 public partial class DisplayCustomers : Form
 {
 string databaseLocation = "C:\\C#\\estateAgent.mdf;";

 public DisplayCustomers()
 {
 InitializeComponent();
 loadCustomerNames();
 }

 DataSet dsCustomers = new DataSet();

 public void loadCustomerNames()
 {
 }

 }

The code to load customer records from the database can now be added.

 public void loadCustomerNames()
 {
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 try
 {
 con.Open();
 SqlCommand cmCustomers = new SqlCommand();
 cmCustomers.Connection = con;
 cmCustomers.CommandType = CommandType.Text;
 cmCustomers.CommandText = "SELECT * FROM customer";
 SqlDataAdapter daCustomers = new SqlDataAdapter(cmCustomers);
 daCustomers.Fill(dsCustomers);
 con.Close();

 int countRecords = dsCustomers.Tables[0].Rows.Count;

 for (int i = 0; i < countRecords; i++)
 {
 DataRow drCustomer = dsCustomers.Tables[0].Rows[i];
 string customerName = drCustomer[1] + ", " + drCustomer[2];
 listBox1.Items.Add(customerName);
 }
 }
 catch
 {
 MessageBox.Show("File error");
 }
 }

108 Programming with C#.NET

Notice how the loop takes each data row in turn from the whole data set, then extracts the

surname and forename fields. These are assembled together, separated by a comma, for display in

the list box.

Run the program and check that the customer names are displayed correctly.

As with the houses earlier, we will create another form to display the full customer record when a

name is selected from the list box.

Add a new Windows Form and name this ‘CustomerDetails’. Add labels, textBoxes and comboBoxes

to the form as shown below. To save time, copy and paste the required components from the

AddCustomer form which you created earlier, keeping the component names unaltered.

Include a label for display of the customerID. Give this the name ‘lblCustomerID’, and set the text

initially to ‘X’. Add buttons to close the form, save changes to the record, delete the record, and to

search for suitable properties for this customer, naming these as btnClose, btnSave, btnDelete and

btnSearch.

 Chapter 7: Estate Agent Database 109

Go to the ‘CustomerDetails’ program page and add lines of code to include the ‘using SqlClient’

directive, and to specify the database location. Create a getCustomerDetails() method which will

accept a customer record, set up variables from each of the fields, then display the data using the

screen components.

using System.Text;
using System.Windows.Forms;

using System.Data.SqlClient;

namespace estateAgent
{
 public partial class CustomerDetails : Form
 {
 string databaseLocation = "C:\\C#\\estateAgent.mdf;";

 public CustomerDetails()
 {
 InitializeComponent();
 }

 public void getCustomerDetails(DataRow drCustomer)
 {
 lblCustomerID.Text = Convert.ToString(drCustomer[0]);
 txtSurname.Text = Convert.ToString(drCustomer[1]);
 txtForename.Text = Convert.ToString(drCustomer[2]);
 txtMaxprice.Text = String.Format("{0:0,0}", drCustomer[3]);
 txtMinbeds.Text = Convert.ToString(drCustomer[4]);
 comboBox1.SelectedIndex = Convert.ToInt16(drCustomer[5]);
 comboBox2.SelectedIndex = Convert.ToInt16(drCustomer[6]);
 comboBox3.SelectedIndex = Convert.ToInt16(drCustomer[7]);
 }

 }

Return to the DisplayCustomers form and select the listBox. Go to the Properties window and click

the Events icon. Locate the MouseClick event, and double click to create an event method.

110 Programming with C#.NET

Add code to the mouseClick() method:

 private void listBox1_MouseClick(object sender, MouseEventArgs e)
 {
 CustomerDetails frmCustomerDetails = new CustomerDetails();
 int customerSelected = listBox1.SelectedIndex;

 DataRow drCustomerWanted = dsCustomers.Tables[0].Rows[customerSelected];

 frmCustomerDetails.getCustomerDetails(drCustomerWanted);
 frmCustomerDetails.ShowDialog();

 this.Close();
 }

Run the program. Check that customers can be selected and their details are displayed correctly.

Double click the ‘close’ button and add the command Close() to close the form.

Double click the ‘delete record’ button, and add code to display a confirm message for the user.

 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }

 private void btnDelete_Click(object sender, EventArgs e)
 {
 if (MessageBox.Show("Really delete?", "Confirm delete",
 MessageBoxButtons.YesNo) == DialogResult.Yes)
 {

 }
 }

 Chapter 7: Estate Agent Database 111

Add lines of code to delete the database record if the user clicks to confirm deletion.

 private void btnDelete_Click(object sender, EventArgs e)
 {
 if (MessageBox.Show("Really delete?", "Confirm delete",
 MessageBoxButtons.YesNo) == DialogResult.Yes)
 {
 int CustomerID = Convert.ToInt16(lblCustomerID.Text);
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename="+databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 try
 {
 con.Open();
 SqlCommand cmCustomers = new SqlCommand();
 cmCustomers.Connection = con;
 cmCustomers.CommandType = CommandType.Text;
 cmCustomers.CommandText =
 "DELETE customer WHERE customerID='" + CustomerID + "'";
 cmCustomers.ExecuteNonQuery();
 con.Close();
 this.Close();
 }
 catch
 {
 MessageBox.Show("File error");
 }
 }
 }

Double click the ‘save changes’ button to create an event method. Add code to collect data from

the textBoxes and comboBoxes and store it as variables, ready for updating the database record.

 private void btnSave_Click(object sender, EventArgs e)
 {
 int CustomerID = Convert.ToInt16(lblCustomerID.Text);
 string Surname = txtSurname.Text;
 string Forename = txtForename.Text;
 double Maxprice = Convert.ToDouble(txtMaxprice.Text);
 int Minbedrooms = Convert.ToInt16(txtMinbeds.Text);
 int Typewanted = comboBox1.SelectedIndex;
 int Locationwanted = comboBox2.SelectedIndex;
 int Landwanted = comboBox3.SelectedIndex;

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 }

112 Programming with C#.NET

We will complete the btnSave_Click() method by adding code for an UPDATE command in SQL.

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename="+ databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");

 try
 {
 con.Open();
 SqlCommand cmCustomer = new SqlCommand();
 cmCustomer.Connection = con;
 cmCustomer.CommandType = CommandType.Text;
 cmCustomer.CommandText = "UPDATE customer SET surname='" + Surname
 + "', forename='" + Forename + "', maxprice='" + Maxprice
 + "', Minbeds='" + Minbedrooms + "', typeWanted='" + Typewanted
 + "', locationWanted='" + Locationwanted + "', landWanted='"
 + Landwanted + "' WHERE customerID='" + CustomerID + "'";
 cmCustomer.ExecuteNonQuery();
 con.Close();
 this.Close();
 }
 catch
 {
 MessageBox.Show("File error");
 }
 }

One final option provided by our program is to search for suitable properties for each customer.

Begin by adding a new Windows Form and give this the name ‘SearchProperties’.

Add labels and textBoxes to the form to display the customer’s name, maximum price they wish to

pay, minimum number of bedrooms required, and any particular requirements for house type,

location or land. Name the text boxes as txtCustomer, txtMaxprice, txtMinbeds, txtTypewanted,

txtLocationwanted and txtLandwanted.

Below the text boxes, insert a DataGridView component. At present, this will appear as an empty

grey rectangle.

 Chapter 7: Estate Agent Database 113

Change to the SearchProperties program code screen. Add the ‘using SqlClient’ directive, and the

database location. Create an empty method called propertySearch().

using System.Text;
using System.Windows.Forms;

using System.Data.SqlClient;

namespace estateAgent
{
 public partial class SearchProperties : Form
 {
 string databaseLocation = "C:\\C#\\estateAgent.mdf;";

 public SearchProperties()
 {
 InitializeComponent();
 }

 public void propertySearch(string customerName, double maxprice,
 int minbeds, int typewanted, int locationwanted, int landwanted)
 {

 }
 }

Return to the CustomerDetails form and double click the ‘search properties’ button to create an

event method. Add code which will collect the necessary information about the customer’s

requirements, then transfer this to the SearchProperties form.

 private void btnSearch_Click(object sender, EventArgs e)
 {
 string CustomerName = txtForename.Text + " " + txtSurname.Text;
 double Maxprice = Convert.ToDouble(txtMaxprice.Text);
 int Minbedrooms = Convert.ToInt16(txtMinbeds.Text);
 int Typewanted = comboBox1.SelectedIndex;
 int Locationwanted = comboBox2.SelectedIndex;
 int Landwanted = comboBox3.SelectedIndex;

 SearchProperties frmSearchProperties = new SearchProperties();

 frmSearchProperties.propertySearch(CustomerName, Maxprice, Minbedrooms,
 Typewanted, Locationwanted, Landwanted);
 frmSearchProperties.ShowDialog();

 this.Close();
 }

114 Programming with C#.NET

Go to the SearchProperties form and find the propertySeach() method. Add code to display the

customer requirements in the textBoxes.

 public void propertySearch(string customerName, double maxprice,
 int minbeds, int typewanted, int locationwanted, int landwanted)
 {
 txtCustomer.Text = customerName;
 txtMaxprice.Text = String.Format("{0:0,0}", maxprice);
 txtMinbeds.Text = Convert.ToString(minbeds);
 string s = "";
 switch (typewanted)
 {
 case 0: s = "NO PREFERENCE"; break;
 case 1: s = "Detached house (1)"; break;
 case 2: s = "Semi-detached house (2)"; break;
 case 3: s = "Bungalow (3)"; break;
 case 4: s = "Terraced house (4)"; break;
 }
 txtTypewanted.Text = s;
 switch (locationwanted)
 {
 case 0: s = "NO PREFERENCE"; break;
 case 1: s = "Town (1)"; break;
 case 2: s = "Village (2)"; break;
 case 3: s = "Country (3)"; break;
 }
 txtLocationwanted.Text = s;
 switch (landwanted)
 {
 case 0: s = "NO PREFERENCE"; break;
 case 1: s = "Small garden (1)"; break;
 case 2: s = "Large garden (2)"; break;
 case 3: s = "Agricultural land (3)"; break;
 }
 txtLandwanted.Text = s;
 }

Run the program, select a customer, then click to search for suitable properties. The

SearchProperties form should open, and the customer’s requirements should be displayed:

 Chapter 7: Estate Agent Database 115

We will now set up an SQL query to identify suitable properties for the customer.

Continue the propertySeach() method by creating a dataSet to hold the results of the query. Add a

connection to the database, and set up the structure for a TRY … CATCH block.

 switch (landwanted)
 {
 case 0: s = "NO PREFERENCE"; break;
 case 1: s = "Small garden (1)"; break;
 case 2: s = "Large garden (2)"; break;
 case 3: s = "Agricultural land (3)"; break;
 }
 txtLandwanted.Text = s;

 DataSet dsProperty = new DataSet();

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename="+databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 try
 {

 }
 catch
 {
 MessageBox.Show("File error");
 }
 }

Code can then be added to create the query:

 try
 {
 con.Open();
 SqlCommand cmProperty = new SqlCommand();
 cmProperty.Connection = con;
 cmProperty.CommandType = CommandType.Text;
 string query = "SELECT * FROM house WHERE price<=" + maxprice
 + " AND bedrooms>=" + minbeds;
 if (typewanted > 0)
 {
 query = query + " AND propertyType =" + typewanted;
 }
 if (locationwanted > 0)
 {
 query = query + " AND location =" + locationwanted;
 }
 if (landwanted > 0)
 {
 query = query + " AND land =" + landwanted;
 }
 cmProperty.CommandText = query;

 SqlDataAdapter daProperty = new SqlDataAdapter(cmProperty);
 daProperty.Fill(dsProperty);
 con.Close();
 }
 catch
 {
 MessageBox.Show("File error");

116 Programming with C#.NET

Look carefully at the way in which the query is built up.

 We begin by asking the computer to select only the records for which the house price is less

than or equal to the maximum price the customer wishes to pay.

 We add a condition that the number of bedrooms must be greater than or equal to the

minimum number of bedrooms required.

 If the customer has indicated a requirement for a particular type of house then we will select

only the records for this house type. If the customer has expressed ‘NO PREFERENCE’ by

entering a typewanted code of zero, then we will not add this extra requirement to the

query.

 Similarly, we will add extra requirements for the house location and land included, unless

the customer has expressed ‘NO PREFERENCE’ for these factors.

Once the query has been constructed and run by the program, suitable house records will be

selected from the database and transferred to the dsProperty dataset.

The final step is to display the results of the query in the dataGrid:

 daProperty.Fill(dsProperty);
 con.Close();

 dataGridView1.DataSource = dsProperty.Tables[0];

 DataGridViewColumn column = dataGridView1.Columns[1];
 column.Width = 160;
 }
 catch
 {
 MessageBox.Show("File error");
 }

Run the complete program, and check that suitable properties are selected to meet the customers’

requirements:

Carry out final testing of all the program options, including options to edit and delete customer

records. Add Close() commands to 'Close' buttons where necessary.

