
114 Programming with C#.NET

8 College Courses

In this program we will introduce classes of objects as a means of representing entities in a

data model. We will design a record keeping system for a college to enter and store details

of courses, students, and enrolments of students on particular courses. Three classes of

objects will be needed to operate the system:

We will begin by setting up a database containing three tables to hold data for courses,

students and enrolments.

Open Visual Studio, but do not start a new project yet.

On the menu line, select ‘View / Server Explorer’

Right-click on ‘Data Connections’, then select ‘Add Connection’. If you are asked to choose a Data

Source, select:

 Microsoft SQL Server Database File

COURSE

Course title
Qualification
Teacher
Room
Session times

STUDENT

Name
Address
Phone
E-mail

ENROLMENT

Course

Student

Fee paid
Assessment
 grades

 Chapter 8: College Courses 115

Use the ‘Browse’ option to navigate to the location where your C# programs are stored. Give the file

name ‘collegeCourses’ for the database which will be created.

Click ‘OK’, then answer ‘Yes’ that you wish to create the database file.

Click-right on ‘Tables’ and select ‘Add New Table’:

116 Programming with C#.NET

We will begin by setting up a table to store records of the college courses. To keep the program

simple we will just store the course title, although in a real system the database would store

further information about each course such as: the tutor, room, days and times of the

classes.

Go to the CREATE TABLE line and change the name of the table to ‘courses’.

Click the ‘Update’ button above the list of fields. When the Database Update window appears, click

the ‘Update Database’ button.

Close the courses table design page and re-open the Server Explorer window. Right-click on

collegeCourses.mdf and select 'Refresh'.

Click the small arrow to the left of the Tables icon. The courses table which you created should now

be shown.

 Chapter 8: College Courses 117

Repeat the steps above to create a students table. For simplicity, we will only add three fields:

surname, forename and dateOfBirth. In a real system, this table would include the student's

address and other contact details.

Delete the Primary Key by right-clicking on the key icon alongside the first field of the table, then

select 'Remove Primary Key' for the drop down list.

Go to the CREATE TABLE line and change the name of the table to ‘students’.

Click the ‘Update’ button above the list of fields. When the Database Update window appears, click

the ‘Update Database’ button.

Complete the database structure by adding a third table for enrolments. Again delete the Primary

Key from the table.

118 Programming with C#.NET

Close the conection to the collegeCourses database by right-clicking the , ready to begin

work on the program.

Start a new C# project. Select ‘Windows Forms Application', and call the project

‘collegeCourses’.

Set up a menuStrip on Form1, in a similar way to the Estate Agent Database program in

Chapter 7. Create options for adding and displaying courses, students and enrolments:

 Chapter 8: College Courses 119

We will create a form for adding courses. Go to the Solution Explorer window, right click on the

collegeCourses program icon, then select ‘Add / New Item’. Choose Windows Form and give the

name ‘AddCourse’.

Add a label, a textBox with the name txtCourseTitle, and a button with the name btnAddCourse.

Return to Form1 and double click the ‘Add course’ menu option. Add code to open the AddCourse

form.

 private void addCourseToolStripMenuItem_Click(object sender, EventArgs e)

 {

 AddCourse frmAddCourse = new AddCourse();

 frmAddCourse.ShowDialog();

 }

Run the program and check that the AddCourse form opens correctly.

120 Programming with C#.NET

The object oriented way of handling data in this program will be rather different to the procedural

approach of previous programs. Each time that a course is entered, a separate course object will be

created and the course title will be assigned to it as a property of the object.

We must begin by defining the course class. Go to the Solution Explorer window, right-click on the

collegeCourses program, and select ‘Add / New Item’. From the item list, choose ‘Class’ and give

this the name ‘course’.

The file that you have created has no Form associated with it. Only its code window can be opened.

We will add some useful functions:

 courseCount is an integer which will record the number of courses entered.

 course[] defines an array of course objects. We are allowing for six courses to be entered,

but the array size could be set to any maximum required. No memory space is actually used

in the computer until we choose to create course objects when the program is running.

 courseTitle is a property of the object. In a real system, other properties would be included,

such as the name of the course tutor, and the location and times of classes.

 class course

 {

 public static int courseCount;

 public static course[] courseObject = new course[6];

 private string courseTitle;

 public void setTitle(string t)

 {

 courseTitle = t;

 }

 public string getTitle()

 {

 return courseTitle;

 }

 }

 Chapter 8: College Courses 121

Two methods have been created:

 setTitle() allows the course title to be transferred into the course object.

 getTitle() allows the course title to be transferred back from the course object to the

outside program.

These two methods are the only means by which the value of courseTitle can be accessed or

changed. This approach makes object oriented programming more secure and less liable to errors.

In a procedural program, data is often accessible from different parts of the program, leading to

unexpected logical errors which can be difficult to identify and correct.

When a new course object is created, it should be added to the database table so that it is available

on future occasions that the program is run. We will add a saveCourse() method to do this:

using System.Linq;

using System.Text;

using System.Data;

using System.Data.SqlClient;

namespace collegeCourses

{

 class course

 {

 string databaseLocation = "C:\\C#\\collegeCourses.mdf;";

 public static int courseCount;

 public static course[] courseObject = new course[6];

 private string courseTitle;

 public void setTitle(string t)

 {

 courseTitle = t;

 }

 public string getTitle()

 {

 return courseTitle;

 }

 public void saveCourse()

 {

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;

 AttachDbFilename=" +databaseLocation + "Integrated Security=True;

 Connect Timeout=30; User Instance=True");

 con.Open();

 SqlCommand cmCourse = new SqlCommand();

 cmCourse.Connection = con;

 cmCourse.CommandType = CommandType.Text;

 cmCourse.CommandText ="INSERT INTO courses(courseTitle)

 VALUES ('" + courseTitle + "')";

 cmCourse.ExecuteNonQuery();

 con.Close();

 }

122 Programming with C#.NET

The lines beginning:

 SqlConnection con = new SqlConnection(…

 cmCourse.CommandText ="INSERT INTO…

should each be entered as a single line of code with no line breaks.

It is necessary to add ’using Data’ and ‘using SqlClient’ directives, and to give the location of the

database.

Return to the AddCourse form. Double click the ‘add course’ button and add code to the event

procedure.

 public partial class AddCourse : Form

 {

 public AddCourse()

 {

 InitializeComponent();

 }

 private void btnAddCourse_Click(object sender, EventArgs e)

 {

 string title = txtCourseTitle.Text;

 course.courseObject[course.courseCount] = new course();

 course.courseObject[course.courseCount].setTitle(title);

 course.courseObject[course.courseCount].saveCourse();

 course.courseCount++;

 this.Close();

 }

 }

This method carries out a series of actions:

 The course title entered in the textBox is collected.

 A new course object is created. This is assigned a location in the courseObject[] array

according to the current value of courseCount.

 The course title is transferred to the new object using the setTitle() method.

 The new course object has its property details saved into the database table – in this case,

just the course title needs to be saved.

 Finally, courseCount is increased by one.

Return to Form1. We will initialise the number of courses to zero when the program first starts by

adding a line of code to the Form1() method:

 public partial class Form1 : Form
 {

 public Form1()
 {
 InitializeComponent();

 course.courseCount = 0;
 }

 Chapter 8: College Courses 123

Run the program and enter test data for courses. Connect to the database and check that the

course titles appear correctly in the database table, then delete the database connection.

We can now produce a form to display the list of courses. Right click the collegeCourses program

icon in the Solution Explorer window and select ‘Add / New item'. Create a Windows Form, and

name this ‘DisplayCourses’:

Add a ListBox and Button to the form.

124 Programming with C#.NET

Rename the button as btnClose. Double click the button and add a line of code to close the form.

 public partial class DisplayCourses : Form
 {
 public DisplayCourses()
 {
 InitializeComponent();
 }

 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }

Add a courseList() method, and call this from the DisplayCourses() method.

 public partial class DisplayCourses : Form
 {
 public DisplayCourses()
 {
 InitializeComponent();

 courseList();
 }

 private void courseList()
 {
 int courseCount = course.courseCount;
 string title;

 listBox1.Items.Clear();
 for (int i = 0; i < courseCount; i++)
 {
 title = course.courseObject[i].getTitle();
 listBox1.Items.Add(title);
 }
 }

Notice how the courseList() method collects courseCount from the course class. It then uses this

variable to operate a loop which loads the title of each course and displays it in the list box. Each

course title is obtained from the array of course objects using the getTitle() method.

Return to Form1. Double click the ‘Display Courses’ menu option and add code to open the

displayCourses form:

 private void displayCoursesToolStripMenuItem_Click(object sender, EventArgs e)
 {
 DisplayCourses frmDisplayCourses = new DisplayCourses();
 frmDisplayCourses.ShowDialog();
 }

 Chapter 8: College Courses 125

We have one more task to complete before courses can be displayed by the program. It is necessary

to add a method to Form1 which will load the course information from the database table and

create course objects when the program first runs.

Begin by adding the ‘using SqlClient’ directive and the database location:

using System.Windows.Forms;

using System.Data.SqlClient;

namespace collegeCourses
{
 public partial class Form1 : Form
 {
 string databaseLocation = "C:\\C#\\collegeCourses.mdf;";

Create a loadCourses() method to load the records from the database table. Call this from the
Form1() method:

 public Form1()
 {
 InitializeComponent();
 course.courseCount = 0;

 loadCourses();
 }

 private void loadCourses()
 {
 DataSet dsCourses = new DataSet();

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" + databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 try
 {
 con.Open();
 SqlCommand cmCourses = new SqlCommand();
 cmCourses.Connection = con;
 cmCourses.CommandType = CommandType.Text;
 cmCourses.CommandText = "SELECT * FROM courses";
 SqlDataAdapter daCourses = new SqlDataAdapter(cmCourses);
 daCourses.Fill(dsCourses);
 con.Close();
 }
 catch
 {
 MessageBox.Show("File error");
 }
 }

Remember that the line beginning:

 SqlConnection con = new SqlConnection(…

should be entered as a single line of code with no line breaks.

126 Programming with C#.NET

Add code to find the number of courses loaded, then use a loop to create the correct number of

course objects and set the courseTitle for each object.

 SqlDataAdapter daCourses = new SqlDataAdapter(cmCourses);

 daCourses.Fill(dsCourses);
 con.Close();

 int countRecords = dsCourses.Tables[0].Rows.Count;

 for (int i = 0; i < countRecords; i++)
 {
 DataRow drCourse = dsCourses.Tables[0].Rows[i];
 string courseTitle = Convert.ToString(drCourse[0]);

 course.courseObject[course.courseCount] = new course();
 course.courseObject[course.courseCount].setTitle(courseTitle);

 course.courseCount++;
 }
 }
 catch
 {

Run the program and select the ‘Display courses’ menu option. The course titles which you entered

earlier should be displayed.

This completes the courses section of the program.

 Chapter 8: College Courses 127

We can now work on the students section which will be structured in a very similar way. Begin by

creating a Windows Form with the name ‘AddStudent’.

 Insert two textBoxes and two labels for ‘Surname’ and ‘Forename’. Name the editBoxes as

txtSurname and txtForename.

 Add a DateTimePicker component which will be used to enter the student’s date of birth.

This should also have a label.

 Complete the form with a button. Give this the name btnAddStudent.

Go to Form1 and add code to the ‘Add student’ menu option to open the AddStudent form.

 private void addStudentToolStripMenuItem_Click(object sender, EventArgs e)
 {
 AddStudent frmAddStudent = new AddStudent();
 frmAddStudent.ShowDialog();
 }

Run the program and check that the ‘Add student’ option opens the form correctly. Date of birth

can be selected by clicking first on the calendar drop down arrow, then on the month heading, and

finally on the year heading to reach the scrolling year display, as shown below.

128 Programming with C#.NET

It is now necessary to create a student class file. Go to the Solution Explorer window, right-click the

collegeCourses program icon, and select ‘Add / New Item’.

Choose ‘Class’, and give the name ‘student’:

We will first set up a class property to record the total number of students input, and an array to
hold up to 12 student objects. We can then add the surname, forename and date of birth
properties needed for a student object.

 class student
 {
 public static int studentCount;
 public static student[] studentObject = new student[12];

 private string surname;
 private string forename;
 private DateTime dateOfBirth;
 }

 Chapter 8: College Courses 129

Methods can then be added to transfer the surname, forename and date of birth into and out of the
student object:

 class student
 {
 public static int studentCount;
 public static student[] studentObject = new student[12];

 private string surname;
 private string forename;
 private DateTime dateOfBirth;

 public void setSurname(string s)
 {
 surname = s;
 }

 public string getSurname()
 {
 return surname;
 }

 public void setForename(string f)
 {
 forename = f;
 }

 public string getForename()
 {
 return forename;
 }

 public void setDateOfBirth(DateTime d)
 {
 dateOfBirth = d;
 }

 public DateTime getDateOfBirth()
 {
 return dateOfBirth;
 }
 }

We will complete the student class with a saveStudent() method, to transfer a student record into

the database table. Add ‘using Data’ and ‘using SqlClient’ directives, and give the database location:

using System.Linq;
using System.Text;

using System.Data;
using System.Data.SqlClient;

namespace collegeCourses
{
 class student
 {
 string databaseLocation = "C:\\C#\\collegeCourses.mdf;";

 public static int studentCount;
 public static student[] studentObject = new student[12];

130 Programming with C#.NET

Insert the saveStudent() method into the class file after the list of properties:

 private string surname;
 private string forename;
 private DateTime dateOfBirth;

 public void saveStudent()
 {
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30;User Instance=True");

 con.Open();
 SqlCommand cmStudent = new SqlCommand();
 cmStudent.Connection = con;
 cmStudent.CommandType = CommandType.Text;
 cmStudent.CommandText = "INSERT INTO students(surname, forename, dateOfBirth)
 VALUES ('" + surname + "','" + forename + "','" +
 dateOfBirth.ToString("MM/dd/yyyy") + "')";
 cmStudent.ExecuteNonQuery();
 con.Close();
 }

Return to Form1 and add a line of code to the Form1() method to initialise the number of students

to zero when the program first runs:

 public Form1()
 {
 InitializeComponent();
 course.courseCount = 0;

 student.studentCount = 0;

 loadCourses();
 }

Go to the AddStudent form and double click the ‘Add student’ button. Insert code into the
button_click method to create a new student object:

 private void btnAddStudent_Click(object sender, EventArgs e)
 {
 string surname = txtSurname.Text;
 string forename = txtForename.Text;
 string d = Convert.ToString(dateTimePicker1.Value);
 DateTime dateOfBirth = Convert.ToDateTime(d);

 student.studentObject[student.studentCount] = new student();
 student.studentObject[student.studentCount].setSurname(surname);
 student.studentObject[student.studentCount].setForename(forename);
 student.studentObject[student.studentCount].setDateOfBirth(dateOfBirth);
 student.studentObject[student.studentCount].saveStudent();

 student.studentCount++;

 this.Close();
 }

 Chapter 8: College Courses 131

Run the program and enter test data for several students:

Exit from the program and use the Server Explorer to open the students table in the database.

Check that the student data has been saved correctly, then close the connection to the database.

With the student input form working, we can now create a DisplayStudents form. Go to the

Solution Explorer window and add new item. Select Windows Form and give the name

‘DisplayStudents’.

132 Programming with C#.NET

Add a listBox and button to the form.

Right-click on the form and select the program code view.

We will display students’ details in the list box in the format: date of birth, surname, forename. For

example: 19/11/1996 Young, Sally

Create a studentList() method, and call this from the DisplayStudents() method:

 public partial class DisplayStudents : Form
 {
 public DisplayStudents()
 {
 InitializeComponent();

 studentList();
 }

 private void studentList()
 {
 int studentCount = student.studentCount;
 string surname;
 string forename;
 DateTime dateOfBirth;

 listBox1.Items.Clear();
 for (int i = 0; i < studentCount; i++)
 {
 surname = student.studentObject[i].getSurname();
 forename = student.studentObject[i].getForename();
 dateOfBirth = student.studentObject[i].getDateOfBirth();

 listBox1.Items.Add(dateOfBirth.ToString("dd/MM/yyyy")
 + " " + surname + ", " + forename);
 }
 }
 }

Notice how the number of students is obtained from the student class, then a loop is used to access

the surname, forename and date of birth from each of the objects in the studentObject array.

 Chapter 8: College Courses 133

To complete the display of student details, return to Form1 and add a loadStudents() method. Call

this from the Form1() method:

 public Form1()
 {
 InitializeComponent();
 course.courseCount = 0;
 student.studentCount = 0;
 loadCourses();

 loadStudents();
 }

 private void loadStudents()
 {
 DataSet dsStudents = new DataSet();

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" + databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 try
 {
 con.Open();
 SqlCommand cmStudents = new SqlCommand();
 cmStudents.Connection = con;
 cmStudents.CommandType = CommandType.Text;
 cmStudents.CommandText = "SELECT * FROM students";
 SqlDataAdapter daStudents = new SqlDataAdapter(cmStudents);
 daStudents.Fill(dsStudents);
 con.Close();

 int countRecords = dsStudents.Tables[0].Rows.Count;

 for (int i = 0; i < countRecords; i++)
 {
 DataRow drStudent = dsStudents.Tables[0].Rows[i];
 string surname = Convert.ToString(drStudent[0]);
 string forename = Convert.ToString(drStudent[1]);
 DateTime dateOfBirth = Convert.ToDateTime(drStudent[2]);

 student.studentObject[student.studentCount] = new student();
 student.studentObject[student.studentCount].setSurname(surname);
 student.studentObject[student.studentCount].setForename(forename);
 student.studentObject[student.studentCount].setDateOfBirth(dateOfBirth);

 student.studentCount++;
 }
 }
 catch
 {
 MessageBox.Show("File error");
 }
 }

This method works in a similar way to loadCourses() which you wrote earlier. A loop is used to

collect the surname, forename and date of birth from each student record in the data set. A new

studentObject is created, and we set its properties using this data.

134 Programming with C#.NET

Double click the ‘Display students’ menu option and add code to open the DisplayStudents form:

 private void displayStudentsToolStripMenuItem_Click(object sender, EventArgs e)
 {
 DisplayStudents frmDisplayStudents = new DisplayStudents();
 frmDisplayStudents.ShowDialog();
 }

Run the program. Select the ‘Display students’ option, and check that your student test data is

shown correctly.

The final stage of the progam is to handle the enrolment of students on courses. Create a new

Windows Form and give this the name ‘AddEnrolment’.

 Chapter 8: College Courses 135

Add two ComboBoxes to the form, along with labels. Complete the form with a button to enrol a

student on a course. Name the button as btnAddEnrolment.

We will create an enrolment class, as we did for courses and students. Go to the Solution Explorer

and right-click on the collegeCourses program to select ‘Add /New item’. Choose ‘Class’, and give

the name ‘enrolment’.

Add a property to store the total number of enrolments, an array for enrolment objects, and course

title and student name properties for each enrolment recorded:

class enrolment
 {
 public static int enrolCount;
 public static enrolment[] enrolObject = new enrolment[16];

 private string course;
 private string student;
 }

136 Programming with C#.NET

Add methods to the enrolment class for transfering the course title and student name into
and out of an enrolment object:

 class enrolment
 {
 public static int enrolCount;
 public static enrolment[] enrolObject = new enrolment[16];

 private string course;
 private string student;

 public void setCourse(string c)
 {
 course = c;
 }

 public string getCourse()
 {
 return course;
 }

 public void setStudent(string s)
 {
 student = s;
 }

 public string getStudent()
 {
 return student;
 }

The final requirement for the enrolment class is a method to store enrolment records in the

database. Begin by adding ‘using Data’ and ‘using SqlClient’ directives, and giving the database

location:

using System.Linq;
using System.Text;

using System.Data;
using System.Data.SqlClient;

namespace collegeCourses
{
 class enrolment
 {
 string databaseLocation = "C:\\C#\\collegeCourses.mdf;";

 public static int enrolCount;
 public static enrolment[] enrolObject = new enrolment[16];

 Chapter 8: College Courses 137

The saveEnrolment() method can now be written:

 private string course;
 private string student;

 public void saveEnrolment()
 {
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" + databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");

 con.Open();
 SqlCommand cmEnrol = new SqlCommand();
 cmEnrol.Connection = con;
 cmEnrol.CommandType = CommandType.Text;
 cmEnrol.CommandText = "INSERT INTO enrolments(student, course)
 VALUES ('" + student + "','" + course + "')";
 cmEnrol.ExecuteNonQuery();
 con.Close();
 }

 public void setCourse(string c)
 {
 course = c;
 }

Go to Form1 and add a line of code to the Form1() method to initialise the number of enrolments to

zero when the program begins:

 public Form1()
 {
 InitializeComponent();
 course.courseCount = 0;
 student.studentCount = 0;

 enrolment.enrolCount = 0;

 loadCourses();
 loadStudents();
 }

Double click the ‘Enrol student on course’ menu option, then add code to open the addEnrolment

form.

 private void enrolStudentToolStripMenuItem_Click(object sender, EventArgs e)
 {
 AddEnrolment frmAddEnrolment = new AddEnrolment();
 frmAddEnrolment.ShowDialog();
 }

138 Programming with C#.NET

Open the program code view for the addEnrolment form. This form has two comboBoxes which

should provide drop-down lists of student names and course titles. It will then be possible to make

an enrolment by selecting the relevant student and course from the lists, as in the design below:

Begin by producing a loadData() method. This uses loops to obtain the student and course data

from the arrays of objects, and then inserts this data into the comboBox drop-down lists.

Add a line of code to call the loadData() method from the AddEnrolment() method when the form

is opened.

 public AddEnrolment()
 {
 InitializeComponent();

 loadData();
 }

 private void loadData()
 {
 int studentCount = student.studentCount;
 string surname;
 string forename;
 DateTime dateOfBirth;

 comboBox1.Items.Clear();
 for (int i = 0; i < studentCount; i++)
 {
 surname = student.studentObject[i].getSurname();
 forename = student.studentObject[i].getForename();
 dateOfBirth = student.studentObject[i].getDateOfBirth();

 comboBox1.Items.Add(dateOfBirth.ToString("dd/MM/yyyy")
 + " " + surname + ", " + forename);
 }

 int courseCount = course.courseCount;
 string title;

 comboBox2.Items.Clear();
 for (int i = 0; i < courseCount; i++)
 {
 title = course.courseObject[i].getTitle();
 comboBox2.Items.Add(title);
 }
 }

Student

Course

25/04/1992 Evans, Thomas

GCSE English

GCSE Mathematics

AS Geography

GCSE Mathematics

 Chapter 8: College Courses 139

Move to the form design view and double click the ‘enrol student on course’ button. Add code to

the button_click method to collect the selected student and course names from the comboBoxes,

create a new enrolment object, set the properties of the object, then save the data into the

database file.

 private void btnAddEnrolment_Click(object sender, EventArgs e)
 {
 string student = comboBox1.Text;
 string course = comboBox2.Text;

 enrolment.enrolObject[enrolment.enrolCount] = new enrolment();
 enrolment.enrolObject[enrolment.enrolCount].setStudent(student);
 enrolment.enrolObject[enrolment.enrolCount].setCourse(course);
 enrolment.enrolObject[enrolment.enrolCount].saveEnrolment();

 enrolment.enrolCount++;

 this.Close();
 }

Run the program. Go to the Add enrolment form and select combinations of students and courses,

then click the button to enter each enrolment.

Exit from the program and use the Server Explorer to open the collegeCourses database. Check that

the enrolments have been recorded correctly in the enrolments table, then close the database

connection.

We can now consider how the enrolments can be displayed by the program. It will be useful for the

staff of the college if this can be done in two different ways:

 As a list of the courses, showing the students enrolled on each course.

 As a list of students, showing the courses for which each student is enrolled.

We will provide these options as two separate forms.

140 Programming with C#.NET

Return to Form1 and add a loadEnrolments() method. This will work in a very similar way to the

methods which you wrote earlier to load course and student records.

Call the loadEnrolments() method from the Form1() method.

 public Form1()
 {
 InitializeComponent();
 course.courseCount = 0;
 student.studentCount = 0;
 enrolment.enrolCount = 0;
 loadCourses();
 loadStudents();

 loadEnrolments();
 }

 private void loadEnrolments()
 {
 DataSet dsEnrol = new DataSet();

 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" +databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 try
 {
 con.Open();
 SqlCommand cmEnrol = new SqlCommand();
 cmEnrol.Connection = con;
 cmEnrol.CommandType = CommandType.Text;
 cmEnrol.CommandText = "SELECT * FROM enrolments";
 SqlDataAdapter daEnrol = new SqlDataAdapter(cmEnrol);
 daEnrol.Fill(dsEnrol);
 con.Close();

 int countRecords = dsEnrol.Tables[0].Rows.Count;

 for (int i = 0; i < countRecords; i++)
 {
 DataRow drEnrol = dsEnrol.Tables[0].Rows[i];
 string student = Convert.ToString(drEnrol[0]);
 string course = Convert.ToString(drEnrol[1]);

 enrolment.enrolObject[enrolment.enrolCount] = new enrolment();
 enrolment.enrolObject[enrolment.enrolCount].setStudent(student);
 enrolment.enrolObject[enrolment.enrolCount].setCourse(course);

 enrolment.enrolCount++;

 }
 }
 catch
 {
 MessageBox.Show("File error");
 }
 }

 Chapter 8: College Courses 141

Create a new Windows Form and give this the name ‘EnrolByCourse’.

Add a listBox and button to the form:

Go to Form1, double click the ‘Display enrolments by course’ menu option and add lines of code to

open the form:

 private void displayEnrolmentsByCourseToolStripMenuItem_Click
 (object sender, EventArgs e)
 {
 EnrolByCourse frmEnrolByCourse = new EnrolByCourse();
 frmEnrolByCourse.ShowDialog();
 }

Change to the program code view for the EnrolByCourse form. Create a courseList() method and

call this from the EnrolByCourse() method. Add variables to hold the student and course properties

when they are accessed from the object classes.

 public EnrolByCourse()
 {
 InitializeComponent();

 courseList();
 }

 private void courseList()
 {
 int courseCount = course.courseCount;
 string title;

 int enrolCount = enrolment.enrolCount;
 string student;
 string courseName;
 }

142 Programming with C#.NET

The strategy we will use to display the courses, showing the students enrolled on each course, is:

1. LOOP for each course

Display the title of this course

2. LOOP for each enrolment

 3. IF the enrolment is for this course THEN

 Display the student name

Add lines of code to the courseList() method to operate the loops and IF condition:

 private void courseList()
 {
 int courseCount = course.courseCount;
 string title;

 int enrolCount = enrolment.enrolCount;
 string student;
 string courseName;

 listBox1.Items.Clear();
 for (int i = 0; i < courseCount; i++)
 {
 title = course.courseObject[i].getTitle();
 listBox1.Items.Add(title);
 for (int j = 0; j < enrolCount; j++)
 {
 student = enrolment.enrolObject[j].getStudent();
 courseName = enrolment.enrolObject[j].getCourse();
 if (courseName == title)
 {
 listBox1.Items.Add(" "+student);
 }
 }
 listBox1.Items.Add("");
 }
 }

Run the program and select the ‘Display enrolments by course’ menu option.

The EnrolByCourse form should open, with your test data displayed in the listBox in a similar way to

the example below.

 Chapter 8: College Courses 143

The final task in this program is to display a list of students, showing the courses for which each

student is enrolled.

Create another Windows Form and name this ‘EnrolByStudent’. Add a list box and button as before:

The strategy we will use to display the students, showing the courses for which they are enrolled, is:

1. LOOP for each student

Display the name of this student

2. LOOP for each enrolment

 3. IF the enrolment is for this student THEN

 Display the course title

144 Programming with C#.NET

Right-click on the EnrolByStudent form to change to the Code view. Create a studentList() method

to implement the algorithm. Call the studentList() method from the EnrolByStudent() method.

 public EnrolByStudent()
 {
 InitializeComponent();

 studentList();
 }

 private void studentList()
 {
 int studentCount = student.studentCount;
 string surname;
 string forename;
 DateTime dateOfBirth;

 int enrolCount = enrolment.enrolCount;
 string studentName;
 string courseName;

 listBox1.Items.Clear();
 for (int i = 0; i < studentCount; i++)
 {
 surname = student.studentObject[i].getSurname();
 forename = student.studentObject[i].getForename();
 dateOfBirth = student.studentObject[i].getDateOfBirth();
 string s = dateOfBirth.ToString("dd/MM/yyyy") + " "
 + surname + ", " + forename;
 listBox1.Items.Add(s);
 for (int j = 0; j < enrolCount; j++)
 {
 studentName = enrolment.enrolObject[j].getStudent();
 courseName = enrolment.enrolObject[j].getCourse();
 if (studentName == s)
 {
 listBox1.Items.Add(" " + courseName);
 }
 }
 listBox1.Items.Add("");
 }
 }

Go to Form1, double click the ‘Display enrolments by student’ menu option and add lines of code to

open the form:

 private void displayEnrolmentsByStudentToolStripMenuItem_Click
 (object sender, EventArgs e)
 {
 EnrolByStudent frmEnrolByStudent = new EnrolByStudent();
 frmEnrolByStudent.ShowDialog();
 }

 Chapter 8: College Courses 145

Run the program and check that a correct list of students is produced from your enrolment data:

