
 117

EIGHT

Maximums and Minimums

In computer programs it is often necessary to find the largest or smallest of a set of
numbers stored in an array. The next program demonstrates how this is done:

We are going to write a program which will record the prices of a number of different
makes of printer, then search for the most and least expensive. Begin by setting up a new
subdirectory PRINTER and save a Delphi project into it. Use the Object Inspector to
maximize the form, then drag the grid to nearly fill the screen.

Place a string grid component on the form and set its properties:

 FixedCols 0
 ColCount 2
 RowCount 7
 DefaultColWidth 100
 Options:
 goEditing True

 ScrollBars None

 118

Add a button with the caption 'check prices' below the string grid, and two edit boxes
and the labels 'maximum' and 'minimum ', as shown above.

Take the mouse pointer to the top grey row of the string grid and move to the right edge
of the first column. A column sizing symbol will appear:

Hold down the mouse button and drag the first column to be about twice as wide as the
second column.

The columns of the string grid are going to hold makes of printer and their prices, as in the
example below:

The column headings can be set up by a 'FormCreate' event handler. Double-click the
dotted form grid to produce the procedure, then add the lines:

procedure TForm1.FormCreate(Sender: TObject);
begin
 stringgrid1.cells[0,0]:='printer';
 stringgrid1.cells[1,0]:='price';
end;

Compile and run the program. Check that you are able to type information into the string
grid, then return to the Delphi editing screen.

 119

When figures are entered in the 'price' column, these need to be stored in an array in a
similar way to the exam marks program in the previous chapter. Begin by setting up the
array in the 'public declarations' section near the top of the program:

 public
 { Public declarations }
 price:array[1..6] of real;
 end;

Click on the string grid component and go to the Object Inspector. From the Events list
double-click alongside 'OnKeyUp'. Add lines to the procedure to transfer values from
column 1 into the price array:

procedure TForm1.StringGrid1KeyUp(Sender: TObject;
 var Key: Word;Shift: TShiftState);
var
 y:integer;
begin
 if stringgrid1.col=1 then
 begin
 y:=stringgrid1.row;
 if stringgrid1.cells[1,y]='' then
 price[y]:=0
 else
 price[y]:=strtofloat(stringgrid1.cells[1,y]);
 end;
end;

This procedure begins by checking whether an entry has just been made in column 1:

if stringgrid1.col=1 then . . .

If so, the variable y is used to record the row number where the entry has taken place:

y:=stringgrid1.row;

If that cell of the string grid is blank, the corresponding array element is set to zero:

if stringgrid1.cells[1,y]='' then
 price[y]:=0

Otherwise, the text in the cell is converted to a decimal number and stored in the
corresponding array box:

else
 price[y]:=strtofloat(stringgrid1.cells[1,y]);

This is illustrated in the diagram below.

 120

 stringgrid array

Compile, and run the program. Enter correct and incorrect data in the price column to
check the error trapping, then return to the Delphi editing screen.

The next stage is to write a procedure to check the prices, select the maximum and
minimum, and display these in the edit boxes below the string grid. Set up an event
handler procedure for the 'check prices' button and add the lines:

procedure TForm1.Button1Click(Sender: TObject);
var
 maxprice,minprice:real;
 i:integer;
begin
 maxprice:=price[1];
 minprice:=price[1];
 for i:=2 to 6 do
 begin
 if price[i]>maxprice then
 maxprice:=price[i];
 if price[i]<minprice then
 minprice:=price[i];
 end;
 edit1.text:=floattostrf(maxprice,ffFixed,8,2);
 edit2.text:=floattostrf(minprice,ffFixed,8,2);
end;

The way this works is illustrated by the diagrams on the next page.

row 0
row 1
row 2
row 3
row 4
. . . .

267.99 price[1]

456.22 price[2]

122.80 price[3]

788.22 price[4]

column 0 column 1

 121

We begin by assuming that box 1 of the price array contains the both the maximum and
the minimum price so far...

 267.99 456.22 122.80 788.22 188.94 304.82

 price[1] price[2] price[3] price[4] price[5] price[6]

The procedure then uses a loop to move along each of the remaining array boxes in turn,
seeing whether a new maximum or minimum occurs. Each time a new winner is found,
the results are updated:

 267.99 456.22 122.80 788.22 188.94 304.82

 price[1] price[2] price[3] price[4] price[5] price[6]

The maximum is updated at array box 2.

 267.99 456.22 122.80 788.22 188.94 304.82

 price[1] price[2] price[3] price[4] price[5] price[6]

The minimum is updated at box 3, and so on...
By the end of the search we know the maximum and minimum prices for the whole
array.

max so far: 267.99

max so far: 456.22

max so far: 456.22

min so far: 267.99

min so far: 267.99

min so far: 122.80

 122

Compile and run the program. Enter the test data and check that the maximum and
minimum prices are shown correctly when the button is pressed. Try varying the prices
and make sure the program always gives the correct result. Return to the Delphi editing
screen.

We are now going to tackle a slightly more difficult problem. As well as showing the
prices of the most expensive and cheapest printer, we also want to display the make. Add
two extra edit boxes to the form:

The event handler procedure for the button needs to be modified so that as well as the
maximum and minimum prices, we keep track of the positions in the array where these
occur. Refering back to the diagrams, we update the maximum position and minimum
position each time a new winner is found during the search:

 267.99 456.22 122.80 788.22 188.94 304.82

 price[1] price[2] price[3] price[4] price[5] price[6]

max so far: 267.99
in position 1

min so far: 267.99
in position 1

 123

 267.99 456.22 122.80 788.22 188.94 304.82

 price[1] price[2] price[3] price[4] price[5] price[6]

The maximum position is updated at array box 2 as well as the maximum price itself.

 267.99 456.22 122.80 788.22 188.94 304.82

 price[1] price[2] price[3] price[4] price[5] price[6]

The minimum position is updated at box 3, and so on...

By the end of the search we know the positions of the maximum and minimum prices in
the array, as well as the actual values.

 267.99 456.22 122.80 788.22 188.94 304.82

 price[1] price[2] price[3] price[4] price[5] price[6]

max so far: 456.22
in position 2

max so far: 456.22
in position 2

maximum: 788.22
in position 4

min so far: 267.99
in position 1

min so far: 122.80
in position 3

minimum: 122.80
in position 3

 124

We can then use this information to print the corresponding entries from column 0 of the
string grid on the screen - this will show the actual names of the printers.

Make changes to the button click event handler procedure as shown below:

procedure TForm1.Button1Click(Sender: TObject);
var
 maxprice,minprice:real;
 i,maxpos,minpos :integer;
begin
 maxprice:=price[1];
 minprice:=price[1];
 maxpos:=1;
 minpos:=1;
 for i:=2 to 6 do
 begin
 if price[i]>maxprice then
 begin
 maxprice:=price[i];
 maxpos:=i;
 end;

maximum
on row 4

 125

 if price[i]<minprice then
 begin
 minprice:=price[i];
 minpos:=i;
 end;
 end;
 edit1.text:=floattostrf(maxprice,ffFixed,8,2);
 edit2.text:=floattostrf(minprice,ffFixed,8,2);
 edit3.text:=stringgrid1.cells[0,maxpos];
 edit4.text:=stringgrid1.cells[0,minpos];
end;

Compile and run the completed program. Enter the test data and check that the names of
the most expensive and cheapest printers are found correctly.

Stock market prices

The next program is to show changes in the price of company shares on the stock market,
and to identify the companies with the largest rise or fall in share value.

 126

Set up a new sub-directory SHARES and save a Delphi project into it. Use the Object
Inspector to maximize the form, and drag the grid to nearly fill the screen.

Place a string grid component on the form and set its properties:

 FixedCols 0
 ColCount 4
 RowCount 6
 DefaultColWidth 100
 Options:
 goEditing True

 ScrollBars None

Add a label with the caption 'Stock Market' above the string grid, and a button below
with the caption 'check shares'. Also add two pairs of edit boxes and the labels 'greatest
rise' and 'greatest fall', as shown above.

Take the mouse pointer to the top grey row of the string grid and move to the right edge
of the first column. A column sizing symbol will appear:

Hold down the mouse button and drag the first column to be about twice as wide as the
others.

The columns of the string grid are going to hold company names, the old price of their
shares, the new share price, and the change in share value, as in the example below:

The column headings can be set up by a 'FormCreate' event handler. Double-click the
dotted form grid to produce the procedure.

 127

Add the lines:
procedure TForm1.FormCreate(Sender: TObject);
begin
 stringgrid1.cells[0,0]:='company';
 stringgrid1.cells[1,0]:='old price';
 stringgrid1.cells[2,0]:='new price';
 stringgrid1.cells[3,0]:='change';
end;

Compile and run the program. Check that you are able to type information into the string
grid, then return to the Delphi editing screen.

We will need three arrays of real (decimal) numbers to store the old price, new price, and
change in price for each of the shares. Set up the arrays in the public declarations
section:

 public
 { Public declarations }
 old,new,change:array[1..5] of real;
 end;

Click on the string grid and press ENTER to bring up the Object Inspector. Click the
Events tab, then double-click alongside 'OnKeyUp' to produce an event handler. Add the
lines:

procedure TForm1.StringGrid1KeyUp(Sender: TObject;
 var Key: Word; Shift: TShiftState);
var
 x,y:integer;
begin
 x:=stringgrid1.col;
 y:=stringgrid1.row;
 if x=1 then
 begin
 if stringgrid1.cells[1,y]='' then
 old[y]:=0
 else
 old[y]:=strtofloat(stringgrid1.cells[1,y]);
 end;
 if x=2 then
 begin
 if stringgrid1.cells[2,y]='' then
 new[y]:=0
 else
 new[y]:=strtofloat(stringgrid1.cells[2,y]);
 end;
end;

 128

This procedure begins by setting x and y to be the column and row numbers where an
entry has been made in the string grid:

 x:=stringgrid1.col;
 y:=stringgrid1.row;

If the entry is in column 1 then the text is converted to a decimal number and put into the
'old price' array:

 if x=1 then
 begin
 if stringgrid1.cells[1,y]='' then
 old[y]:=0
 else
 old[y]:=strtofloat(stringgrid1.cells[1,y]);
 end;

If the entry is in column 2 then the text is converted to a decimal number and put into the
'new price' array:

 if x=2 then
 begin
 if stringgrid1.cells[2,y]='' then
 new[y]:=0
 else
 new[y]:=strtofloat(stringgrid1.cells[2,y]);
 end;

Compile and run the program. Enter correct and incorrect data in the old price and new
price columns to check the error trapping, then return to the Delphi editing screen.

column 1
 column 0

column 2

 column 1: x=1
 row 3: y=3

 129

The next stage is to write a procedure to calculate the changes in price, select the
maximum and minimum change, and display the results in the edit boxes below the string
grid. Set up an event handler procedure for the 'check shares' button and add the lines:

procedure TForm1.Button1Click(Sender: TObject);
var
 y,maxpos,minpos:integer;
 max,min:real;
begin
 for y:=1 to 5 do
 begin
 change[y]:=new[y]-old[y];
 stringgrid1.cells[3,y]:=
 floattostrf(change[y],ffFixed,8, 2);
 end;
 max:=change[1];
 min:=change[1];
 maxpos:=1;
 minpos:=1;
 for y:=2 to 5 do
 begin
 if change[y]>max then
 begin
 max:=change[y];
 maxpos:=y;
 end;
 if change[y]<min then
 begin
 min:=change[y];
 minpos:=y;
 end;
 end;
 edit1.text:=stringgrid1.cells[0,maxpos];
 edit2.text:=floattostrf(change[maxpos],ffFixed,8, 2);
 edit3.text:=stringgrid1.cells[0,minpos];
 edit4.text:=floattostrf(change[minpos],ffFixed,8, 2);
end;

This procedure begins with a loop which takes each of the shares in turn and calculates the
change in price - this is stored in the change array:

 for y:=1 to 5 do
 begin
 change[y]:=new[y]-old[y];
 stringgrid1.cells[3,y]:=floattostrf(change[y],ffFixed,8,2);
 end;

The loop then displays the change in share price on the appropriate line of the string grid.

change in price = new price - old price

 130

The next part of the procedure is very similar to the printer program we completed earlier
in this chapter. We record that the first array box contains the maximum and minimum
change in share values so far:

 max:=change[1];
 min:=change[1];
 maxpos:=1;
 minpos:=1;

A loop then checks the other entries in the price change array. If a new maximum or
minimum is found, the variables are updated:

 for y:=2 to 5 do
 begin

 {a new maximum has been found}
 if change[y]>max then
 begin
 max:=change[y];
 maxpos:=y;
 end;

 {a new minimum has been found}
 if change[y]<min then
 begin
 min:=change[y];
 minpos:=y;
 end;
 end;

The last step is to display the company name and change in price for the maximum and
minimum price variations:

 edit1.text:=stringgrid1.cells[0,maxpos];
 edit2.text:=floattostrf(change[maxpos],ffFixed,8,2);
 edit3.text:=stringgrid1.cells[0,minpos];
 edit4.text:=floattostrf(change[minpos],ffFixed,8,2);

Notice that all prices are being displayed with two decimal places to represent pounds and
pence.

Compile and run the program. Check this with suitable test data.

 131

There is one final problem we should deal with - there may be no shares which have
increased in price, or no shares which have decreased in price. These situations require
special screen messages:

Add lines near the end of the 'check shares' button click procedure to do this:

 if change[y]<min then
 begin
 min:=change[y];
 minpos:=y;
 end;
 end;
 if change[maxpos]>0 then
 begin
 label2.caption:='greatest rise';
 edit1.visible:=true;
 edit2.visible:=true;
 edit1.text:=stringgrid1.cells[0,maxpos];
 edit2.text:=floattostrf
 (change[maxpos],ffFixed,8,2);
 end
 else
 begin
 label2.caption:='NO SHARES INCREASED IN PRICE';
 edit1.visible:=false;
 edit2.visible:=false;
 end;

 132

 if change[minpos]<0 then
 begin
 label3.caption:='greatest fall';
 edit3.visible:=true;
 edit4.visible:=true;
 edit3.text:=stringgrid1.cells[0,minpos];
 edit4.text:=floattostrf
 (change[minpos],ffFixed,8,2);
 end
 else
 begin
 label3.caption:='NO SHARES FELL IN PRICE';
 edit3.visible:=false;
 edit4.visible:=false;
 end;
end;

The sections we have added contain IF..THEN..ELSE.. conditional blocks. The first of
these checks whether any change in share price is greater than zero:

if change[maxpos]>0 then { IF there has been an increase in share price}
begin
 { display details of the company shares with maximum price increase}
end
else
begin
 { give a message that no shares have increased in price}
end;

To display the message about no increase in share price we use the line:

 label3.caption:='NO SHARES FELL IN PRICE';

to change the label text at the bottom of the screen, and the lines:

 edit3.visible:=false;
 edit4.visible:=false;

to turn off the edit boxes where the company name and share price would have been
displayed.

Compile and test the completed program with a variety of share prices. Check the cases
where all shares rise in price, and where all shares fall in price, as well as a combination of
prices rising and falling.

 133

Block analysis

A very useful technique to show the structure of a complicated piece of program is block
analysis. Boxes are drawn around each procedure, loop and conditional (if..then..else..)
block in the program. As an example, this is done for the Button Click event handler:

procedure TForm1.Button1Click(Sender: TObject);
var
 y,maxpos,minpos:integer;
 max,min:real;
begin
 for y:=1 to 5 do
 begin
 change[y]:=new[y]-old[y];
 stringgrid1.cells[3,y]:=
 floattostrf(change[y],ffFixed,8,2);
 end;
 max:=change[1];
 min:=change[1];
 maxpos:=1;
 minpos:=1;
 for y:=2 to 5 do
 begin
 if change[y]>max then
 begin
 max:=change[y];
 maxpos:=y;
 end;

 if change[y]<min then
 begin
 min:=change[y];
 minpos:=y;
 end;
 end;
 edit1.text:=stringgrid1.cells[0,maxpos];
 edit2.text:=floattostrf(change[maxpos],ffFixed,8,2);
 edit3.text:=stringgrid1.cells[0,minpos];
 edit4.text:=floattostrf(change[minpos],ffFixed,8,2);
end;

Notes can then be added to explain the purpose of each of the procedures, loops and
conditionals which you have identified. This type of documentation would be very useful
for a programmer who needed to modify the program at a later date.

procedure

 loop

 loop

conditional
;

conditional

 134

SUMMARY

In this chapter you have:
• set up string grids with multiple columns, and altered column widths
• transferred decimal numbers from a string grid to a real array
• used an algorithm to search an array for the maximum and minimum value
• modified the algorithm to record the positions in an array of the maximum and

minimum values
• seen how block analysis can show the structure of a program more clearly, by

identifying the procedures, loops and conditional blocks which are present.

