
 389

EIGHTEEN

An Introduction to
Object Oriented Programming

Object oriented programming is a new style of writing programs which has a number of
important advantages, particularly when developing large and complex software projects.

You have already been using objects in every Delphi program you have written, although
you may not have realised this. Each component is an object - for example: buttons, spin
edit boxes, string grids, image boxes, and forms themselves.

An easy way to understand object oriented programming is to make an analogy with
electronics:

Electronic circuits are made up of Programs are made up of
components: components:

Electronic components are assembled Program components are assembled
together to produce complete devices: together to produce software applications:

Think now about the purpose of an

 390

electronic component - for example a memory chip for a computer:

To understand how the chip forms part of the overall computer system, we need to know:
• its properties - a description of its physical size and position on the circuit board, the

memory capacity, and the data currently stored in it.
• the methods by which it carries out actions or communicates with the rest of the

computer - in this case, the input and output of data via the metal pins.

In Object Oriented Programming, the objects making up the program also have
properties and methods:

Every object has:

• properties, which describe the object.

 {For a Button, these include: width, height, the caption displayed, the position on
 the Form, and whether or not it is visible.}

• methods, which carry out actions or communicate with the rest of the program.
 {For example: an event handling procedure to carry out some data processing each
 time the button is clicked.}

In addition to the component objects already available, Delphi also allows us to add our
own objects to a program. In the next section we will see how this is done in a simple
example program:

properties:
size of the chip, position
on the circuit board, data
stored in the chip

methods:
input and output of data by
means of the pin connections

properties:
size of the button, its position
on the screen

methods:
button click event handling
procedure

 391

A computer studies lecturer has a collection of 8 reference manuals which can be
borrowed by students. The lecturer requires a computer program to record the
names of the borrowers when the manuals are out on loan.

Begin the program by setting up a directory BOOKS and save a Delphi project into it.
Use the Object Inspector to maximize the Form, and drag the Form grid to nearly fill the
screen.

The objects used in a program can be any kind of building blocks which help towards a
solution of the programming problem, so in this case we might choose to set up 'book'
objects.

We begin by considering what properties and methods the book objects should have. To
help with this, an object structure diagram can be drawn:

The properties are shown inside the object structure diagram, and the methods are shown
as rectangles cutting through the edge of the diagram - this reflects the idea that properties
belong personally to an object, but methods provide ways for the object to communicate
with the outside program.

In the context of our simple library program, the important properties of a book are:
• The book number and title , which allow us to identify a particular book.
• Whether or not the book has been borrowed.
• If the book is out on loan, the name of the borrower.

To operate the program we will need methods which can:
• Record a book being borrowed, by setting borrowed to true and entering the name of

the borrower.

booknumber : integer

borrowed : boolean

borrower : string[30]

title : string[30]

borrow

return

display

BOOK

properties
methods

 392

• Record a book being returned, by setting borrowed to false.
• Display a list of the books, showing which are out on loan and the names of the

borrowers .

The first step in creating an object is to set up a class definition. {If we again use the
electronics analogy, this is equivalent to producing a design for the way the electronic
component will be manufactured.}

Go to the 'type' heading near the top of Unit1 and add the class definition for a book :

type
 TBook = class(TObject)
 booknumber:integer;
 title:string[30];
 borrowed:boolean;
 borrower:string[30];
 procedure borrow;
 procedure return;
 procedure display;
 end;

 TForm1 = class(TForm)

Notice that object class definitions usually begin with the letter 'T' and list all the properties
and methods which will be needed.

Now move down to the implementation section of the program and add empty procedures
for the borrow, return, and display methods - we will come back later to add lines of
program to these procedures:

implementation
{$R *.DFM}

 procedure TBook.borrow;
 begin
 end;

 procedure TBook.return;
 begin
 end;

 procedure TBook.display;
 begin
 end;

 end.

 393

So far, we have not actually produced any objects. There are 8 computer manuals in the
library, so an array of 8 book objects will be needed. Go to the 'variables' heading just
above the implementation section and add this array:

var
 Form1: TForm1;
 book:array[1..8] of TBook;

implementation

Go now to the Form1 window and add components to the grid as shown:

• Place a list box in the upper part of the screen.
• Below this add two edit boxes, and place labels alongside with the captions 'book

number' and 'borrower '.
• At the bottom of the screen put three buttons with the captions 'borrow ', 'return ' and

'exit'.

 Double-click the 'exit' button to produce an event handler, then add a halt command:
 procedure TForm1.Button3Click(Sender: TObject);
 begin
 halt;
 end;

Compile and run the program to check that the components are displayed correctly, then
click the 'exit' button to return to the Delphi editing screen.

 394

We are now ready to initialise the program by setting up the book titles. Double-click the
mouse on the Form1 grid to produce an 'OnCreate' event handler. Add the lines:

procedure TForm1.FormCreate(Sender: TObject);
var
 i:integer;
begin
 for i:=1 to 8 do
 begin
 book[i]:=TBook.create;
 book[i].booknumber:=i;
 book[i].borrowed:=false;
 end;
 book[1].title:='HTML for Web pages';
 book[2].title:='Windows 95 reference';
 book[3].title:='Microsoft Office 97';
 book[4].title:='3-D graphics techniques';
 book[5].title:='C++ object oriented programs';
 book[6].title:='Using Java';
 book[7].title:='Databases in Delphi';
 book[8].title:='80486 machine code';
 listbox1.clear;
 for i:=1 to 8 do
 book[i].display;
end;

This procedure uses a loop to create the 8 book objects in the array:
 for i:=1 to 8 do
 begin
 book[i]:=TBook.create;

We also make use of the loop counter to initialise the book numbers:

 book[i].booknumber:=i;
and the borrowed property for each book is set to false:

 book[i].borrowed:=false;

We then enter the book titles:
 book[1].title:='HTML for Web pages';
 book[2].title:='Windows 95 reference';

Finally, the display method is used to show this book information in the list box:

 listbox1.clear;
 for i:=1 to 8 do
 book[i].display;

 395

Go now to the display method, and add the lines of program:

 procedure TBook.display;
 var
 textline:string;
 begin
 textline:=inttostr(booknumber);
 textline:=textline+ ': ' + title;
 Form1.listbox1.items.add(textline);
 if borrowed=false then
 Form1.listbox1.items.add('not on loan')
 else
 begin
 textline:='on loan to ' + borrower;
 Form1.listbox1.items.add(textline);
 end;
 Form1.listbox1.items.add('');
 end;

Compile and run the program. Check that the book numbers and titles are displayed
correctly, and that each book is shown as not on loan:

Return to the Delphi editing screen. Double-click the 'borrow ' button to set up an event
handler, then add the lines:

 396

procedure TForm1.Button1Click(Sender: TObject);
var
 n,i:integer;
begin
 n:=strtoint(edit1.text);
 if (n>=1) and (n<=8) and (edit2.text>'')then
 begin
 book[n].borrow;
 listbox1.clear;
 for i:=1 to 8 do
 book[i].display;
 end;
 edit1.text:='';
 edit2.text:='';
end;

This procedure reads the book number which has been entered in edit box 1 and converts it
to an integer number:

n:=strtoint(edit1.text);

We check that this is a valid book number in the range 1 - 8, and also that the name of a
borrower has been entered in edit box 2:

 if (n>=1) and (n<=8) and (edit2.text >' ') then

If these checks are successful, we call the borrow method for the appropriate book and
record the loan:

 book[n].borrow;

The information in the list box is then redisplayed to show the loan:
 listbox1.clear;
 for i:=1 to 8 do
 book[i].display;

Go to the borrow procedure and add the lines of program to record the loan:

 procedure TBook.borrow;
 begin
 borrowed:=true;
 borrower:=Form1.edit2.text;
 end;

Compile and run the program. Check that loans can be recorded correctly, as shown
below, then return to the Delphi editing screen.

 397

To complete the program, it is necessary to handle the return of books. Double-click the
'return ' button and add the lines of program:

procedure TForm1.Button2Click(Sender: TObject);
var
 n,i:integer;
begin
 n:=strtoint(edit1.text);
 if (n>=1) and (n<=8) then
 begin
 book[n].return;
 listbox1.clear;
 for i:=1 to 8 do
 book[i].display;
 end;
 edit1.text:='';
end;

Add lines to the return procedure to update the record:

procedure TBook.return;
begin
 borrowed:=false;
 borrower:='';
end;

Compile and run the finished program. Check that data is displayed correctly when books
are borrowed or returned.

 398

For our second program using object oriented methods, we will look at a more
complicated problem where more than one kind of object is required:

Theatre bookings

A theatre requires a computer program to record the seat bookings for a
play. The theatre has 8 rows each containing 12 seats. Initially, all the
seats are shown as unbooked.

It should be possible to enter the number of the row and the quantity of
seats required, and the computer will make the booking if sufficient seats
are available.

(To keep the program as simple as possible, we will not worry about
the cancellation of bookings.)

Begin the program by setting up a directory THEATRE and save a Delphi project into it.
Use the Object Inspector to maximize the Form, and drag the Form grid to nearly fill the
screen.

Remember that objects can be any kind of building blocks which help towards solving the
problem, so in this case we might choose to set up a 'seat' object. Before starting the
programming, we draw an object structure diagram for a seat:

seatnumber : integer

booked : boolean

bookseat

display

SEAT

properties

methods

rownumber : integer

 399

The important properties for a seat are:
• The seat number, which allows us to identify a particular seat in the row.
• The row number in which the seat is situated
• Whether or not the seat is booked.

To operate the booking system, we will need methods which can:
• Book the seat.
• Display the seat booking information on screen.

We need to write a class definition for the object. Do this below the 'type' heading near
the top of Unit 1:

type
 TSeat = class(TObject)
 seatnumber:integer;
 rownumber:integer;
 booked:boolean;
 procedure bookseat;
 procedure display;
 end;

 TForm1 = class(TForm)

Add empty procedures below the implementation heading. We will return later to
complete these:

implementation
{$R *.DFM}

procedure TSeat.bookseat;
begin
end;

procedure TSeat.display;
begin
end;

Notice that each procedure heading includes 'TSeat' to show that it belongs to the 'seat'
object.

We will begin by setting up and testing a single seat object - once this is working correctly,
we can add further seats to make up the complete theatre. Allocate a variable name under
the var heading:

var
 Form1: TForm1;
 seat: TSeat;

 400

We can now turn our attention to the screen display. As a neat way of showing the
bookings, we could draw a plan of the theatre. Booked seats can be coloured red and
unbooked seats coloured green. Bring the Form1 window to the front, then add an Image
box as shown below. Set the height property to 400 and the width property to 600.

Put a Button below the image box and give this the caption 'book seat':

Double-click the Form grid outside the image box to produce an OnCreate procedure.
Add lines of program which will draw a white background for the theatre plan and add a
rectangle to show the position of the stage:

procedure TForm1.FormCreate(Sender: TObject);
begin
 with image1.canvas do
 begin
 brush.color:=clWhite;
 rectangle(0,0,600,400);
 rectangle(100,20,500,60);
 textout(280,30,'stage');
 end;
end;

 401

Compile and run the program to test the display, then return to the Delphi editing screen.

We can now initialise and display the seat. Add lines to the OnCreate event handler:

procedure TForm1.FormCreate(Sender: TObject);
begin
 with image1.canvas do
 begin
 brush.color:=clWhite;
 rectangle(0,0,600,400);
 rectangle(100,20,500,60);
 textout(280,30,'stage');
 end;
 seat:=TSeat.create;
 seat.seatnumber:=1;
 seat.rownumber:=1;
 seat.booked:=false;
 seat.display;
end;

Return to the TSeat.display procedure and add the lines:

procedure TSeat.display;
var
 xpos,ypos:integer;
begin
 with Form1.image1.canvas do
 begin
 if booked then
 brush.color:=clRed
 else
 brush.color:=clLime;
 xpos:=100+seatnumber*30;
 ypos:=70+rownumber*30;
 rectangle(xpos,ypos,xpos+20,ypos+20);
 end;
end;

The first section of the procedure sets the colour code for the seat - red if booked and
green if unbooked:

 if booked then
 brush.color:=clRed
 else
 brush.color:=clLime;

 402

We then use the seat number and row to calculate a suitable position to display this seat on the
plan of the theatre:

 xpos:= 100 + seatnumber*30;
 ypos:= 70 + rownumber*30;

Finally, we plot a rectangle to represent the seat:

 rectangle(xpos,ypos,xpos+20,ypos+20);

Compile and run the program. A green rectangle should appear, indicating that initially the
seat is not booked:

Return to the Delphi editing screen. Double-click the 'book seat' button to create an event
handler. Add lines to call the method which books the seat, then the method which
redisplays it on the theatre plan:

procedure TForm1.Button1Click(Sender: TObject);
begin
 seat.bookseat;
 seat.display;
end;

Add a line to the TSeat.bookseat procedure to change the booked variable to true:

procedure TSeat.bookseat;
begin
 booked:=true;
end;

Compile and run the program again. This time click the 'book seat' button and the
rectangle representing the seat should change to red. (In this example program we will not
worry about cancelling bookings, but an option to do this would be needed in a complete
booking system.)

We have produced and tested a single seat object. A convenient way to move forward
now is to define an object called 'row' which is made up of 12 seats. An object structure
diagram for row is given below:

 403

The properties of a row are:
• Its number, which tells us how far back it is situated in the theatre.
• The group of 12 seats which make up the row, some of which may be booked and

others unbooked.

The methods we will require are:
• A procedure to book a group of seats in the row (if sufficient are available).
• A procedure to display the row of seats on the theatre plan, colour coded to show

whether or not they are booked.

Add a class definition for the row object below the TSeat definition:

 TRow = class(TObject)
 rownumber:integer;
 seat:array[1..12] of TSeat;
 procedure bookseats;
 procedure display;
 end;

 TForm1 = class(TForm)

Go to the var heading. Delete the entry for seat and replace this with row. Seats are now
part of the row object and do not need to be shown as separate variables:

var
 Form1: TForm1;
 row: TRow;

Modify the FormCreate procedure as shown below:

procedure TForm1.FormCreate(Sender: TObject);
var
 n:integer;

seat :
 array[1..12] of TSeat

bookseats

display

ROW

properties
methods

rownumber : integer

 404

begin
 with image1.canvas do
 begin
 brush.color:=clWhite;
 rectangle(0,0,600,400);
 rectangle(100,20,500,60);
 textout(280,30,'stage');
 end;
 row:=TRow.create;
 row.rownumber:=1;
 for n:=1 to 12 do
 begin
 row.seat[n]:=TSeat.create;
 row.seat[n].seatnumber:=n;
 row.seat[n].rownumber:=1;
 row.seat[n].booked:=false;
 end;
 row.display;
end;

The purpose of these changes are to initialise all the seats in row 1. The loop allocates the
seat numbers, and sets each seat to be unbooked. We finally call the display method to
plot the seats on the theatre plan.

Set up a blank procedure for the TRow.bookseats method:

procedure TRow.bookseats;
begin
end;

Delete the lines from the 'book seat' button click procedure, leaving just the heading and
the begin...end pair. We will come back to complete this procedure later:

procedure TForm1.Button1Click(Sender: TObject);
begin
end;

We can now add the TRow.display method to plot the seats on the theatre plan. This
makes use of the procedure we wrote earlier to display a single seat, but calls this 12
times:

procedure TRow.display;
var
 i:integer;
begin
 for i:=1 to 12 do
 seat[i].display;
end;

 405

Compile and run the program. A complete row of 12 seats should now be displayed. All
will be coloured green as they are initially unbooked:

It would be useful to also display the row number on the plan. To do this, return to the
Delphi editing screen and add lines to the TRow.display procedure:

procedure TRow.display;
var
 i, ypos :integer;
 textline:string;
begin
 textline:='Row '+inttostr(rownumber);
 ypos:=74+rownumber*30;
 with Form1.image1.canvas do
 begin
 brush.color:=clWhite;
 textout(30,ypos,textline);
 end;
 for i:=1 to 12 do
 seat[i].display;
end;

Compile and run the program. The row number should now appear:

Return to the Delphi editing screen. We must now devise a way to enter bookings. Add
an edit box to the Form, and a label alongside with the caption 'number of seats'. Change
the caption on the button to 'book seats':

 406

Double-click the edit box to produce an event handler. Add lines of program to record the
number of seats wanted:

procedure TForm1.Edit1Change(Sender: TObject);
begin
 if edit1.text='' then
 wanted:=0
 else
 wanted:=strtoint(edit1.text);
end;

Add the variable 'wanted' to the Public declarations section:

public
 { Public declarations }
 wanted:integer;

Compile and run the program. Check that the edit box is error trapped to accept only
integer numbers, then return to the Delphi editing screen.

Double-click the 'book seats' button to show the event handler, then add the program lines:

procedure TForm1.Button1Click(Sender: TObject);
var
 count,i:integer;
begin
 count:=0;
 for i:=1 to 12 do
 begin
 if row.seat[i].booked=false then
 count:=count+1;
 end;
 if count>=wanted then
 begin
 count:=0;
 i:=0;
 repeat
 i:=i+1;

 407

 if row.seat[i].booked=false then
 begin
 row.seat[i].booked:=true;
 count:=count+1;
 end;
 until count=wanted;
 row.display;
 end;
end;

This procedure can be explained using an algorithm progressive refinement sequence. The
basic tasks to be carried out are:

1. check if sufficient seats are available
2. IF sufficient seats THEN
3. make the booking
4. redisplay the theatre plan
5. END IF

Step 1 can be further refined:
 1.1 set count to zero
 1.2 LOOP for each of the 12 seats
 1.3 IF the current seat is not booked THEN
 1.4 add 1 to count
 1.5 END IF
 1.6 END LOOP

At the end of step 1, count will tell us how many seats in the row are not booked. This
can then be compared to the number of seats wanted by the customer. If there are
sufficient seats available, we move on to step 3 to make the booking.

Step 3 can be shown in more detail:
 3.1 set count to zero - {this will record the number of seats we book}
 3.2 set a pointer to zero - {this pointer will move along the row
 as each seat is being checked}
 3.3 LOOP
 3.4 move the pointer forward by 1
 3.5 IF the seat at the current pointer position is not booked THEN
 3.6 book the seat
 3.7 add 1 to count
 3.8 END IF
 3.9 UNTIL count is equal to the number of seats required

Compile and run the program. Use a test sequence to check that the seat booking
procedure works correctly. For example, make the following sequence of entries:
 1 seat wanted booking accepted
 3 seats wanted booking accepted

 408

 5 seats wanted booking accepted
 4 seats wanted booking not possible
 2 seats wanted booking accepted

When you are convinced that the program works correctly, return to the Delphi editing
screen.

At present the computer just ignores booking requests if there are not enough seats
available. It would be better to display a message for the user. Add a panel to the form.
Use the object inspector for the panel to set the visible property to false, and blank out the
caption.

Add a label with the caption 'Sorry, not enough seats available', and a button with the
caption 'continue'.

Double-click the 'continue' button to create an event handler and add the lines:

procedure TForm1.Button2Click(Sender: TObject);
begin
 panel1.visible:=false;
 button1.enabled:=true;
end;

Return to the 'book seats' buutton click procedure and add an 'else' condition to display
the panel if a booking cannot be made:

 409

procedure TForm1.Button1Click(Sender: TObject);
var
 count,i:integer;
begin

 if count>=wanted then
 begin

 row.display;
 end
 else
 begin
 button1.enabled:=false;
 panel1.visible:=true;
 end;
end;

Compile and run the program. Make a booking for 4 seats, then try to book a further 9
seats. The panel and warning message should appear:

Notice that the 'book seats' button is greyed out until the panel is closed by the user.

The final step is to increase the number of rows of seats to 8 for the whole theatre. Go
first to the var heading and change the row variable to an array:

 410

var
 Form1: TForm1;
 row: array[1..8] of TRow;

Modify the FormCreate procedure by adding a loop to initialise all 8 rows of seats:

procedure TForm1.FormCreate(Sender: TObject);
var
 m,n:integer;
begin
 with image1.canvas do
 begin

 textout(280,30,'stage');
 end;
 for m:=1 to 8 do
 begin
 row[m]:=TRow.create;
 row[m].rownumber:=m;
 for n:=1 to 12 do
 begin
 row[m].seat[n]:=TSeat.create;
 row[m].seat[n].seatnumber:=n;
 row[m].seat[n].rownumber:=m;
 row[m].seat[n].booked:=false;
 end;
 row[m].display;
 end;
end;

To make bookings the user will need to give the number of the row, as well as the number
of seats required. Go to the Form grid and add another edit box for this:

Place a label alongside with the caption 'row '.

 411

Double-click the edit box to create an event handler and add the lines:

procedure TForm1.Edit2Change(Sender: TObject);
begin
 if edit2.text='' then
 r:=0
 else
 r:=strtoint(edit2.text);
end;

Add the variable r to the Public declarations section:
r:integer ;

Make modifications to the 'book seats' button click procedure as shown. We have
introduced an error trapping line to ensure that a valid row number in the range 1-8 was
selected. Each occurrence of rowmust be replaced by row[r]:

procedure TForm1.Button1Click(Sender: TObject);
var
 count,i:integer;
begin
 if (r>=1) and (r<=8) then
 begin
 count:=0;
 for i:=1 to 12 do
 begin
 if row[r] .seat[i].booked=false then
 count:=count+1;
 end;
 if count>=wanted then
 begin
 count:=0;
 i:=0;
 repeat
 i:=i+1;
 if row[r] .seat[i].booked=false then
 begin
 row[r] .seat[i].booked:=true;
 count:=count+1;
 end;
 until count=wanted;
 row[r] .display;
 end
 else
 begin

 end;
 end;
end;

 412

Compile and run the completed program. Carry out testing to check that bookings can be
made for any of the 8 rows:

