EIGHTEEN

An Introduction to
Object Oriented Programming

Object oriented programming is a new style of writing programs which has a benof
important advantages, particularly when develofange and complex software projects.

You have already been usinbjects in every Delphi program you have written, although
you may not have realised this. Eacdmponentis anobject - for examplebuttons, spin
edit boxes, string grids, image boxes, andforms themselves.

An easy way to understand object oriented progragns to make an analogy with
electronics:

Electronic circuits are made up of Programs are made up of
components: components:
u” ! removwe item
]
Electronic components are assembled Program components are assembled
together to produce complete devices: together to produce software applications:

N - [25| <

array index |data |
: remove item

—)] |

SO = | | | LS| RO =

add item

Think now about the purpose of an

38¢

electronic component - for example a memory chipafcomputer:
properties:
size of the chip, position
on the circuit board, data
stored in the chip

I

i
! '& methods:

input and output of data by
means of the pin connectic

To understand how the chip forms part of the oVemahputer system, we need to know:

« its properties - a description of its physical size and positwnthe circuit board, the
memory capacity, and the data currently stored in i

» the methods by which it carries out actions or communicateshwiite rest of the
computer - in this case, the input and output ¢4 d&@ the metal pins.

In Object Oriented Programming, the objects making up the program also have
properties and methods:

properties:

size of the button, its position
on the screen

removwe item |

'& methods:

button click event handling
procedure
Every object has:

» properties, which describe the object.
{For aButton, these include: width, height, the caption diggth the position on
the Form, and whether or not it is visible.}

» methods which carry out actions or communicate with tastof the program.
{For example: an event handling procedure toycaut some data processing each
time the button is clicked.}

In addition to the component objects already abkild>e phi also allows us to add our

own objects to a program. In the next section we will see how this is dima simple
example program:

39C

A computer studies lecturer has a collection oéference manuals which can be
borrowed by students. The lecturer requires a cbenpprogram to record the
names of the borrowers when the manuals arerolaam.

Begin the program by setting up a directory BOOKf& aave a Delphi project into it.
Use the Object Inspector toaximize the Form, and drag the Form grid to nearly fill the
screen.

The objects used in a program can be any kind idiby blocks which help towards a
solution of the programming problem, so in thisecage might choose to set umok
objects.

We begin by considering whatoperties and methodsthe book objects should have. To
help with this, arobject structure diagram can be drawn:

BOOK
booknumber : integer
borrow
title : string[30]
return
borrowed : boolean
: display
borrower : string[30]

’(\— ’\— methods
properties

The properties are shown inside the object structure diagram,thadethods are shown
as rectangles cutting through the edge of the aiagrthis reflects the idea thatoperties
belong personally to an object, buethods provide ways for the object to communicate
with the outside program.

In the context of our simple library program, thgortantproperties of a book are:
* Thebook numberandtitle, which allow us to identify a particular book.

» Whether or not the book has bdmrrowed.

 If the bookis out on loan, the name of therrower.

To operate the program we will nesdthods which can:

* Record a book being borrowed, by settingborrowed to true and entering the name of
the borrower.

391

* Record a book being returned by settingborrowed to false
» Display a list of the books,showing which are out on loan and the names of the
borrowers.

The first step in creating an object is to set ugags definition {If we again use the
electronics analogy, this is equivalent to prodgcndesign for the way the electronic
component will be manufactured.}

Go to thetype' heading near the top bhitl and add the class definition for a book :

type
TBook = class(TObject)
booknumber:integer;
title:string[30];
borrowed:boolean;
borrower:string[30];
procedure borrow;
procedure return;
procedure display;

end,

TForm1 = class(TForm)

Notice that object class definitions usually begith the letterT" and list all the properties
and methods which will be needed.

Now move down to the implementation section ofgihegram and add empty procedures
for the borrow, return, anddisplay methods - we will come back later to add lines of
program to these procedures:

implementation
{$R *.DFM}

procedure TBook.borrow;
begin
end;

procedure TBook.return;
begin

end;

procedure TBook.display;
begin

end;

end.

392

So far, we have not actually produced any objedtsere are 8 computer manuals in the
library, so an array of 800k objects will be needed. Go to thariables heading just
above themplementation section and add this array:

var
Forml: TFormil;
book:array[1..8] of TBook;

implementation

« Place dist box in the upper part of the screen.

» Below this add twoedit boxes, and placdabels alongside with the captionbcdok
number' and borrower"'.

« At the bottom of the screen put thriegttons with the captionsdorrow’, return' and
‘exit'.

Double-click theéxit' button to produce an event handler, then alialtacommand:
procedure TForm1.Button3Click(Sender: TObject);
begin
halt;
end,
Compile and run the program to check that the comapts are displayed correctly, then
click the éxit' button to return to the Delphi editing screen.

39¢

We are now ready to initialise the program by sgttip the book titles. Double-click the
mouse on thé&orml grid to produce ait©OnCreate' event handler. Add the lines:

procedure TForml.FormCreate(Sender: TObject);
var
izinteger;
begin
fori:=1to 8 do
begin
book[i]:=TBook.create;
book]i].booknumber:=i;
book]i].borrowed:=false;
end,
book[1].title:="HTML for Web pages';
book[2].title:="Windows 95 reference’;
book[3].title:="Microsoft Office 97,
book[4].title:="3-D graphics techniques’;
book[5].title:="C++ object oriented programs';
book[6].title:='Using Java',
book[7].title:='Databases in Delphi’;
book[8].title:='80486 machine code’;
listbox1.clear;

fori:=1to 8 do
book[i].display;
end;

This procedure uses a loop to create the 8 boactsoin the array:
fori:=1to 8 do
begin
book[i]:=TBook.create;

We also make use of the loop counter to initigl@ebook numbers:
book][i].booknumber:=i;

and theborrowed property for each book is set fta se:
book]i].borrowed:=false;

We then enter the book titles:
book[1].title:="HTML for Web pages';
book[2].title:="Windows 95 reference’;

Finally, thedisplay method is used to show this book information inligtebox:
listboxl.clear;
fori:=1to 8 do
book([i].display;

394

Go now to thalisplay method, and add the lines of program:

procedure TBook.display;
var
textline:string;
begin
textline:=inttostr(booknumber);
textline:=textline+ . ' + title;
Form1l.listbox1.items.add(textline);
if borrowed=false then
Forml.listbox1.items.add('not on loan')
else
begin
textline:='on loan to ' + borrower;
Form1l.listbox1.items.add(textline);
end,
Form1l.listbox1.items.add(");
end,

Compile and run the program. Check that Hoek numbers andtitles are displayed
correctly, and that each book is showmaton |oan:

4 Form [_[5]

1. HTML for Web pages =
not on loan

2. Windows 95 reference
not on loan

3: Microsoft Office 97
not on loan

4: 3-D graphics techniques
not on loan

h: C++ object oriented programs
not on loan |

6: Using Java
not on loan

7. Databases in Delphi ~

book number horrower

Return to the Delphi editing screen. Double-clibk borrow' button to set up an event
handler, then add the lines:

39¢

procedure TForml1.Button1Click(Sender: TObject);
var
n,icinteger;
begin
n:=strtoint(edit1.text);
if (n>=1) and (n<=8) and (edit2.text>")then
begin
book[n].borrow;
listbox1.clear;
fori:=1to 8 do
book[i].display;
end,
editl.text:=";
edit2.text:=";
end,

This procedure reads the book number which has éetened iredit box 1 and converts it
to an integer number:
n:=strtoint(editl.text);

We check that this is a valid book number in thegeal - 8, and also that the name of a
borrower has been entereckait box 2:
if (n>=1) and (n<=8) and (edit2.text >'") then . . .

If these checks are successful, we calltherow method for the appropriate book and
record the loan:
book[n].borrow;

The information in the list box is then redisplayedshow the loan:
listbox1.clear;
fori:=1to 8 do
book]i].display;

Go to theborrow procedure and add the lines of program to recaogdatn:

procedure TBook.borrow;
begin
borrowed:=true;
borrower:=Form1l.edit2.text;
end;

Compile and run the program. Check that loans lmamecorded correctly, as shown
below, then return to the Delphi editing screen.

39¢

1: HTML for Web pages *
not on loan

2. Windows 95 reference
on loan to Datydd Jones

3. Microsoft Office 97
on loan to lan Roberts

4: 3D graphics techniques
not on loan

5. C++ object oriented programs
on loan to Susan Edwards _

6: Using Java
not on loan

7. Databases in Delphi -

To complete the program, it is necessary to hatidlereturn of books. Double-click the
'return’ button and add the lines of program:

procedure TForml1.Button2Click(Sender: TObject);
var
n,icinteger;
begin
n:=strtoint(editl.text);
if (n>=1) and (n<=8) then
begin
book[n].return;
listbox1.clear;
fori:=1to 8 do
book[i].display;
end;
editl.text:=";
end;

Add lines to theeturn procedure to update the record:

procedure TBook.return;
begin
borrowed:=false;
borrower:=";
end;

Compile and run the finished program. Check tlzaids displayed correctly when books
are borrowed or returned.

For our second program using object oriented methade wil look at a more
complicated problem where more than one kind od@lif required:

-. - Appliuaﬁnn Theatre bookings

A theatre requires a computer program to recordstda bookings for a
play. The theatre has 8 rows each containing aPsselnitially, all the
seats are shown as unbooked.

It should be possible to enter the number of the amd the quantity of
seats required, and the computer will make the ingoik sufficient seats
are available.

(To keep the program as simple as possible, we n@il worry about
the cancellation of bookings.)

Begin the program by setting up a directory THEAT&# save a Delphi project into it.
Use the Object Inspector toaximize the Form, and drag the Form grid to nearly fill the
screen.

Remember that objects can be any kind of buildiogks which help towards solving the
problem, so in this case we might choose to seh geat object. Before starting the
programming, we draw asbject structure diagram for a seat:

SEAT
seatnumber : integer bookseat
|
rownumber : integer display
booked : boolean ’\;
methods
a

L properties

39¢

The importanproperties for a seat are:

» Theseat number which allows us to identify a particular seathe row.
* Therow number in which the seat is situated

* Whether or not the seath®oked.

To operate the booking system, we will n@aathods which can:
* Book theseat
» Display the seat booking information on screen.

We need to write a class definition for the objeBto this below thetype' heading near
the top ofunit 1:

type
TSeat = class(TObject)
seatnumber:integer;
rownumber:integer;
booked:boolean;
procedure bookseat;
procedure display;

end,

TForm1 = class(TForm)

Add empty procedures below thenplementation heading. We will return later to
complete these:

implementation
{$R *.DFM}

procedure TSeat.bookseat;
begin
end;

procedure TSeat.display;
begin
end;

Notice that each procedure heading includ@&eat to show that it belongs to theeat
object.

We will begin by setting up and testing a singlatsgbject - once this is working correctly,
we can add further seats to make up the completdrth Allocate a variable name under
thevar heading:

var
Forml: TForm1;
seat: TSeat;

We can now turn our attention to the screen displ&g a neat way of showing the
bookings, we could draw a plan of the theatre. K&doseats can be coloured red and
unbooked seats coloured green. Bring the Formi@lavinto the front, then add amage
box as shown below. Set theight property to400and thewidth property to600.

Put aButton below the image box and give this the captimok seat

Double-click the Form grid outside the image boxpteduce an OnCreate procedure.
Add lines of program which will draw a white backgnd for the theatre plan and add a
rectangle to show the position of the stage:

procedure TForml.FormCreate(Sender: TObject);
begin
with imagel.canvas do
begin
brush.color:=clWhite;
rectangle(0,0,600,400);
rectangle(100,20,500,60);
textout(280,30,'stage");
end,
end,

¢ Form1

[_[=]x]

stage

40C

Compile and run the program to test the displagn tieturn to the Delphi editing screen.

We can now initialise and display the seat. Adddito th€OnCreate event handler:

procedure TForml.FormCreate(Sender: TObject);
begin
with imagel.canvas do
begin
brush.color:=clWhite;
rectangle(0,0,600,400);
rectangle(100,20,500,60);
textout(280,30,'stage");

end;
seat:=TSeat.create; ADD
seat.seatnumber:=1, THIS

seat.rownumber:=1;
seat.booked:=false;
seat.display;

end;

Return to the TSeat.display procedure and addrtés: |

procedure TSeat.display;

var
Xpos,ypos:integer;

begin
with Form1l.imagel.canvas do
begin

if booked then

brush.color:=cIRed
else

brush.color:=clLime;
Xpos:=100+seatnumber*30;
ypos:=70+rownumber*30;
rectangle(xpos,ypos,xpos+20,ypos+20);

end;
end;

The first section of the procedure sets the cotmde for the seat - red if booked and
green if unbooked:

if booked then
brush.color:=clRed

else
brush.color:=clLime;

401

We then use the seat number and row to calculstéable position to display this seat on the
plan of the theatre:

Xpos:= 100 + seatnumber*30;

ypos:= 70 + rownumber*30;

Finally, we plot a rectangle to represent the seat:
rectangle(xpos,ypos,xpos+20,ypos+20);

Compile and run the program. A green rectanglelshappear, indicating that initially the
seat is not booked:

. Form1 [_[5]x]

stage

=

Return to the Delphi editing screen. Double-ctis& book seatbutton to create an event
handler. Add lines to call themethod which books the seat, then thaethod which
redisplays it on the theatre plan:

procedure TForml1.Button1Click(Sender: TObject);
begin

seat.bookseat;

seat.display;
end,

Add a line to thél'Seat.bookseaprocedure to change theoked variable to true:

procedure TSeat.bookseat;
begin

booked:=true;
end;

Compile and run the program again. This time clibk book seat button and the
rectangle representing the seat should changelto(he this example program we will not
worry about cancelling bookings, but an option totdis would be needed in a complete
booking system.)

We have produced and tested a single seat obgatonvenient way to move forward

now is to define an object calledw' which is made up of 12 seats. #Alpject structure
diagram for row is given below:

40z

ROW

rownumber : integer bookseats
seat :
array[1..12] of TSeat display

’: ’X— methods

\— properties

The properties of arow are:

* |ts number, which tells us how far back it is situated in theatre.

* The group ofl2 seatswhich make up the row, some of which may be booked
others unbooked.

The methods we will require are:
» A procedure to book a group of seats in the rowufficient are available).

* A procedure to display the row of seats on thetteeplan, colour coded to show
whether or not they are booked.

Add a class definition for theow object below thd Seatdefinition:

TRow = class(TObject)
rownumber:integer;
seat:array[1..12] of TSeat;
procedure bookseats;
procedure display;

end,

TForm1 = class(TForm)

Go to thevar heading. Delete the entry feeatand replace this wittow. Seats are now

part of therow object and do not need to be shown as separatdbhei
var
Forml: TForm1,
row: TRow;

Modify the FormCreate procedure as shown below:
procedure TForml.FormCreate(Sender: TObject);

var
n:integer;

40z

begin
with imagel.canvas do
begin
brush.color:=clWhite;
rectangle(0,0,600,400);
rectangle(100,20,500,60);
textout(280,30,'stage");
end,
row:=TRow.create;
row.rownumber:=1;
forn:=1to 12 do
begin
row.seat[n]:=TSeat.create;
row.seat[n].seatnumber:=n;
row.seat[n].rownumber:=1,;
row.seat[n].booked:=false;
end,
row.display;
end,

The purpose of these changes are to initialiséhe seats in row 1. The loop allocates the
seat numbers, and sets each seat to be unbookedinaMy call thedisplay method to
plot the seats on the theatre plan.

Set up a blank procedure for thRow.bookseatsmethod:

procedure TRow.bookseats;
begin
end,

Delete the lines from thédok seat button click procedure, leaving just the heacang
the begin...end pair. We will come back to congptéis procedure later:

procedure TForml1.Button1Click(Sender: TObject);
begin
end;

We can now add th&Row.display method to plot the seats on the theatre plans Thi
makes use of the procedure we wrote earlier tolagisp single seat, but calls this 12
times:

procedure TRow.display;
var
izinteger;
begin
fori:=1to 12 do
seat[i].display;
end,

404

Compile and run the program. A complete row okgats should now be displayed. All

will be coloured green as they are initially unbedk

et Form1

stage

DO OOD0OEEOOE

-2]x]

It would be useful to also display the row numbartbe plan. To do this, return to the

Delphi editing screen and add lines to Tieow.display procedure:

procedure TRow.display;
var
I, ypos :integer;
textline:string;
begin
textline:='"Row '+inttostr(rownumber);
ypos:=74+rownumber*30;
with Forml.imagel.canvas do
begin
brush.color:=clWhite;
textout(30,ypos,textline);
end,
fori:=1to 12 do
seat[i].display;
end,

Compile and run the program. The row number shoald appear:

an Form1

stage

Row 1 NN ONEEOEOE

- [5]]

Return to the Delphi editing screen. We must newis® a way to enter bookings. Add
anedit box to the Form, and kabel alongside with the captionumber of seats Change

the caption on thbutton to book seat$

40¢

Double-click the edit box to produce an event handAdd lines of program to record the
number of seats wanted:

procedure TForml1.EditlChange(Sender: TObject);
begin
if editl.text="then
wanted:=0
else
wanted:=strtoint(edit1.text);
end;

Add the variablewanted to thePublic declarations section:

public
{ Public declarations }
wanted:integer;

Compile and run the program. Check that the edlit b error trapped to accept only
integer numbers, then return to the Delphi ediiageen.

Double-click the 'book seats' button to show thenghandler, then add the program lines:

procedure TForml1.Button1Click(Sender: TObject);
var
count,i:integer;
begin
count:=0;
fori:=1to 12 do
begin
if row.seat[i].nbooked=false then
count:=count+1,
end,
if count>=wanted then
begin
count:=0;
I:=0;
repeat
=i+l

40¢

if row.seat[i].booked=false then
begin
row.seat[i].booked:=true;
count:=count+1;
end,
until count=wanted,;
row.display;
end,
end,

This procedure can be explained using an algonttogressive refinement sequence. The
basic tasks to be carried out are:

1. check if sufficient seats are available

2. IF sufficient seats THEN

3 make the booking

4. redisplay the theatre plan

5. END IF

Step 1 can be further refined:
1.1 setcount to zero
1.2 LOOP for each of the 12 seats

1.3 IF the current seat is nmbked THEN
1.4 add 1dount

1.5 END IF

1.6 END LOOP

At the end of step Igount will tell us how many seats in the row are not kesh This
can then be compared to the number of seats wawethe customer. If there are
sufficient seats available, we move on to step Biase the booking.

Step 3 can be shown in more detail:
3.1 sefcount to zero - {this will record the number ot we book}
3.2 set a pointer to zero - {this gemwill move along the row
as each seat is belmerked}

3.3 LOOP

3.4 move the pointer forward by 1

3.5 IF the seat at the currenhtawiposition is not booked THEN
3.6 book the seat

3.7 add 1 ¢ount

3.8 END IF

3.9 UNTILcount is equal to the number of seats required

Compile and run the program. Use a test sequemcehéck that the seat booking
procedure works correctly. For example, make tfleving sequence of entries:

1 seat wanted booking accepted

3 seats wdnte booking accepted

5 seats wanted booking accepted
4 seats wanted booking not possible
2 seats wanted booking accepted

When you are convinced that the program works ctytereturn to the Delphi editing
screen.

At present the computer just ignores booking retgudsthere are not enough seats
available. It would be better to display a mesdagehe user. Add pand to the form.
Use theobject inspector for the panel to set thasible property tofalse, and blank out the
caption.

Add alabel with the captionSorry, not enough seats availableand abutton with the
caption continue'.

Double-click thecontinu€e' button to create an event handler and add tbs:lin

procedure TForml1.Button2Click(Sender: TObject);
begin

panell.visible:=false;

buttonl.enabled:=true;
end,

Return to thebook seatsbuutton click procedure and add alsé condition to display
the panel if a booking cannot be made:

40¢

procedure TForml1.Button1Click(Sender: TObject),
var
count,i:integer;
begin
if"c.c.).tlmt>=wanted then
begin
rc;;/.v..'aisplay;
end
else
begin
buttonl.enabled:=false;
panell.visible:=true;
end,
end,

Compile and run the program. Make a booking foedts, then try to book a further 9
seats. The panel and warning message should appear

¢ Form1 HE

stage

Row 1 EEENCNONEOOE

Sorry. not enough seats available continue

number of seats Iil

Notice that thebook seatSbutton isgreyed out until the panel is closed by the user.

The final step is to increase the number of rowsesits to 8 for the whole theatre. Go
first to thevar heading and change thew variable to an array:

var
Forml1: TForm1,
row: array[1..8] of TRow;

Modify the FormCreate procedure by adding a loojit@lise all 8 rows of seats:

procedure TForml.FormCreate(Sender: TObject);
var
m, n:integer;
begin
with imagel.canvas do
begin
textout(280,30,'stage");
end;
for m:=1to 8 do
begin
row[m]:=TRow.create;
row[m].rownumber:=m;
for n:=1to 12 do
begin
row[m].seat[n]:=TSeat.create;
row[m].seat[n].seatnumber:=n;
row[m].seat[n].rownumber:=m;
row[m].seat[n].booked:=false;
end;
row[m].display;
end;
end;

To make bookings the user will need to give the memof the row, as well as the number
of seats required. Go to the Form grid and addhemedit box for this:

Place dabel alongside with the captiorotv '.

41C

Double-click the edit box to create an event hamaltel add the lines:

procedure TForml1.Edit2Change(Sender: TObject);
begin
if edit2.text="then
r:=0
else
r:=strtoint(edit2.text);
end;

Add the variable to thePublic declarations section:
rinteger

Make modifications to thebbok seats button click procedure as shown. We have
introduced an error trapping line to ensure thadla row number in the range 1-8 was
selected. Each occurrencerofvmust be replaced byw(r]:

procedure TForml1.Button1Click(Sender: TObject);
var
count,i:integer;
begin
if (r>=1) and (r<=8) then
begin
count:=0;
fori:=1to 12 do
begin
if row[r] .seat[i].booked=false then
count:=count+1;
end,
if count>=wanted then
begin
count:=0;
i:=0;
repeat
=i+l
if row[r] .seat[i].booked=false then
begin
row[r] .seat[i].booked:=true;
count:=count+1,
end;
until count=wanted,;
row[r] .display;
end
else
begin

411

Compile and run the completed program. Carry estirig to check that bookings can be
made for any of the 8 rows:

4 Form1 HE

stage

Row 1DDD
Row 2 OOOOCOOO0EEEOE
Row 3DDDDD
Row 4DDDDDDDD
Row 5 OOOOCOOO0EEEOE
Row 6 EECO0OOOC0OEOOO
Row 7 DDDDDDDDDDDD
Row & DDDDDDDDDDDD

row number of seats

book seats

41z

