
 266

FOURTEEN

Developing a database (2)

In this second chapter on the Estate Agent's Database project, we will

complete the 'house records' section, then work on the 'customer records'

options:

Begin by loading your project from the ESTATE sub-directory.

The existing program is not very well error trapped. For example, it is

possible to accidentally click on the 'Set up new file' option and lose all the

house records previously entered. Let's do something about this...

Use the 'New form' short-cut button, and select 'Blank form' Form5 will be

created. Press ENTER to bring up the Object Inspector and set the

properties:

 BorderStyle: Dialog

 Caption: Set up new file

 FormStyle: StayOnTop

Place a small Image Box on the left of the Form and load the file

QUEST.BMP. This will display the 'question mark' icon. Add two Labels

with the captions: 'Confirm to set up new file' and 'WARNING: Existing

data will be lost'.

Select the Bit Button component from the ADDITIONAL menu:

BitBtn

 267

Bit Buttons differ from the standard Button component by allowing

bitmaps to be displayed - in this case the tick and cross icons.

Place two Bit Buttons on the Form. Select the left button and press ENTER

to bring up the Object Inspector. Set the Caption to 'OK'. Double-click the

right hand column for the Glyph property, then load the file YES.BMP.

Give the right hand Bit Button the caption 'cancel', and load the graphics file

NO.BMP.

Double-click the 'cancel' button and add a line to the event handler to close

the window:

procedure TForm5.BitBtn2Click(Sender: TObject);

begin

 form5.visible:=false;

end;

Double-click the 'OK' button and add lines to create the new file on disc:

procedure TForm5.BitBtn1Click(Sender: TObject);

begin

 with form1 do

 begin

 assignfile(housefile,'houses.dat');

 rewrite(housefile);

 closefile(housefile);

 end;

 form5.visible:=false;

end;

This requires variables belonging to Form1, so add a 'uses' instruction under

the implementation heading:

 implementation

{$R *.DFM}

uses

 unit1;

It is now necessary to link Form5 into the program so that it can be opened

from the Main Menu.

Go to the Unit1 program and add Unit5 to the 'uses' list:

uses

 SysUtils,.... Menus, Unit2, Unit3, Unit5;

 268

Go to the Form1 window and click 'House records/Set up new file' to open

the event handler procedure. Delete the lines which set up a new file and

replace these with the Form5 command:

procedure TForm1.Setupnewfile1Click

 (Sender: TObject);

begin

 form5.visible:=true;

end;

Build and run the program. Begin by selecting the 'Set up new file' option.

Click the 'OK' button. From the Main Menu, now select the 'Display house

index' option; there should be no houses listed, showing that a new file has

been created.

Enter the first of the properties from the test data: Sea View, Fairbourne.

Use the 'Display house index' option to check that this has been saved on

disc correctly. Now select 'Set up new file', but this time click the 'cancel'

button. The house file should not have been affected - check that the record

for Sea View is still showing in the list of houses, then return to the Delphi

editing screen.

We still have to complete the EDIT and DELETE functions for customer

records. Both will require the 'seek' command, so we need to be sure we

can use this correctly.

The SEEK command

SEEK is a very important command which allows us to pick out a particular

record from a file.

The records we are storing are all the same size, and are arranged in a file

using a numbering system which begins at 0. Let us assume that the first

five houses have been entered so far:

 record 0 record 1 record 2 record 3 record 4

Sea View

Fairbourne

......

High Street,

Porthmadog

.....

Pant Mawr

Bala

......

Old Chapel

Tanygrisiau

......

Barmouth Rd

Dolgellau

......

file pointer

 269

When the file is opened ready to read records, the computer sets up a 'file

pointer'. Initially this points to the first record in position 0. When the first

record has been read, the file pointer moves to the record in position 1:

 record 0 record 1 record 2 record 3 record 4

Each time a record is read into the computer, the file pointer moves

forwards by one position until it reaches the end of the file.

Suppose that we didn't want to read every record, but instead wanted to pick

out just one particular record - for example, The Old Chapel, Tanygrisiau.

The 'Houses available' list shows the order in which records are stored:

House File

Record 0

Record 1

Record 2

Record 3

Record 4

The Old Chapel is record number 3 in the file.

Immediately the file is opened we can use the SEEK command to move the

file pointer directly to position 3:

 record 0 record 1 record 2 record 3 record 4

The record which will now be read into the computer is The Old Chapel.

Sea View

Fairbourne

......

Sea View

Fairbourne

......

High Street,

Porthmadog

.....

High Street,

Porthmadog

.....

Pant Mawr

Bala

......

Pant Mawr

Bala

......

Old Chapel

Tanygrisiau

......

Old Chapel

Tanygrisiau

......

Barmouth Rd

Dolgellau

......

Barmouth Rd

Dolgellau

......

file pointer

seek(housefile,3)

 270

The same method can be used if we wish to save a record back into a

particular position inside the file, rather than just adding it to the end of the

current records.

For example, suppose we have read in the record for the Old Chapel and

have made an alteration to the price. We now need to save the amended

record back into the same position in the file. To do this, use the SEEK

command to move the file pointer to position 3:

 record 0 record 1 record 2 record 3 record 4

The amended record can then be saved back into the file using the 'write'

command.

Let's do this now in the procedure for editing house records. Go to the

Form4 window and double-click the 're-save edited record' button to

create an event handler. Add the lines:

procedure TForm4.Button2Click(Sender: TObject);

begin

 form1.houserecord.address:=edit1.text;

 form1.houserecord.price:=strtofloat(edit2.text);

 form1.houserecord.bedrooms:=strtoint(edit3.text);

 form1.houserecord.housetype:=combobox1.itemindex;

 form1.houserecord.land:=combobox2.itemindex;

 form1.houserecord.location:=combobox3.itemindex;

 with form1 do

 begin

 assignfile(housefile,'houses.dat');

 reset(housefile);

 seek(housefile,form3.filepointer);

 write(housefile,houserecord);

 closefile(housefile);

 end;

 form4.visible:=false;

 form3.visible:=true;

Sea View

Fairbourne

......

High Street,

Porthmadog

.....

Pant Mawr

Bala

......

Old Chapel

Tanygrisiau

......

Barmouth Rd

Dolgellau

......

seek(housefile,3)

Old Chapel

.....

new price

write(housefile,houserecord)

 271

end;

Build and run the program. Select 'House records/Display house index',

then click 'Sea View, Fairbourne' to display the record:

By clicking the small arrows at the right hand end of each ComboBox, drop-

down menus appear. Click on 'detached house', 'large garden' and

'country'. Also change the price and number of bedrooms.

Click the 're-save edited record' button. The program returns to the

'Houses available' list. If you again select 'Sea View, Fairbourne', the

amended record should appear.

The final section we need to complete is: 'delete record'. Before doing that,

please enter some more test data. Use the 'Add house record' menu option

to input the next four houses from the list on page 244. Check that these are

saved correctly using the 'Display house index' option.

Suppose that the house in High Street, Porthmadog has now been sold and

we wish to delete the record. This would leave a gap in the file:

 record 0 record 1 record 2 record 3 record 4

Sea View

Fairbourne

......

High Street,

Porthmadog

.....

Pant Mawr

Bala

......

Old Chapel

Tanygrisiau

......

Barmouth Rd

Dolgellau

......

 272

To avoid a gap, we then copy each of the following records back one place:

 record 0 record 1 record 2 record 3 record 4

The only problem is that this leaves two copies of the last record:

 record 0 record 1 record 2 record 3 record 4

We move the file pointer to the last record. The TRUNCATE command is

then used to cut off the file just before the file pointer - at position 3:

 record 0 record 1 record 2 record 3 record 4

Go to the Form4 screen and double-click the 'delete record' button to create

an event handler. Add the lines:

procedure TForm4.Button3Click(Sender: TObject);

var

 i:integer;

begin

 with form1 do

 begin

 assignfile(housefile,'houses.dat');

Sea View

Fairbourne

......

Sea View

Fairbourne

......

Sea View

Fairbourne

......

High Street,

Porthmadog

.....

Pant Mawr

Bala

......

Old Chapel

Tanygrisiau

......

Barmouth Rd

Dolgellau

......

Pant Mawr

Bala

......

Pant Mawr

Bala

......

Old Chapel

Tanygrisiau

......

Old Chapel

Tanygrisiau

......

Barmouth Rd

Dolgellau

......

Barmouth Rd

Dolgellau

......

Barmouth Rd

Dolgellau

......

Barmouth Rd

Dolgellau

......

seek(housefile,4)

truncate(housefile)

 273

 reset(housefile);

 for i:=form3.filepointer+1 to

 filesize(housefile)-1 do

 begin

 seek(housefile,i);

 read(housefile,houserecord);

 seek(housefile,i-1);

 write(housefile,houserecord);

 end;

 seek(housefile,filesize(housefile)-1);

 truncate(housefile);

 closefile(housefile);

 end;

 form4.visible:=false;

 form3.visible:=true;

end;

The procedure begins by opening the house file:

 assignfile(housefile,'houses.dat');

 reset(housefile);

We now use a loop. Each record following the one to be deleted will be

copied backwards by one position:

 for i:= form3.filepointer+1 to filesize(housefile)-1 do

 begin

 {copy each record back one position}

 end;

Remember that the variable 'filepointer' specifies the position of the record

currently being displayed, and this is the one we have decided to delete.

The actual copying makes use of the SEEK command. Each record is read

into the computer, then the file pointer is moved back so that the record can

be re-saved one position earlier in the file:

 seek(housefile, i);

 read(housefile,houserecord);

 seek(housefile, i-1);

 write(housefile,houserecord);

The final step is to chop off the duplicated record at the end of the file:

 274

 seek(housefile,filesize(housefile)-1);

 truncate(housefile);

This has been quite complicated, so Build and Run the program to convince

yourself that it works!

Select 'House records/Display house index', then select '37, High Street,

Porthmadog'. When details are displayed, press the 'delete record' button.

Check that the record has disappeared from the list of houses without

affecting any of the other entries.

Try adding and deleting houses until you are sure that the program works

correctly, then return to the Delphi editing screen.

{Note: It would be a good idea to add an error trapping window, similar to

the one for 'Set up new file', to check that the user really did want to delete

the record. Do this later if you have time.}

Customer records

We can now move on to the Customer records section of the program. This

will operate in a very similar way to the House records section, so we will

follow the same sequence in setting up the program:

Begin by adding the Customer records menu options. Double-click the

Main Menu icon on Form1 to open the menu editor window, then produce a

drop-down menu for Customer records by adding the three options: 'Set up

new file', 'Display customer index', and 'Add customer record':

 275

Build and run the program to check that the drop-down menu appears

correctly, then return to the Delphi editing screen.

We next need to set up an error trapping window for the 'New file' option.

Click the 'New form' short-cut button to create Form6.

A quick way to set up Form6 is to copy the components from Form5. To

do this, open the Form5 window:

Take the mouse pointer to Form5, near the top left-hand corner of the dotted

grid. With the mouse button held down, move downwards and to the right

until a dotted rectangle encloses the image box, labels and bit buttons.

Release the mouse button, then select Edit/Copy from the top menu line of

the Delphi screen.

Click on the Form6 grid to bring this to the front, then select Edit/Paste. A

copy of components will be transferred to Form6. Adjust the edges of the

Form to a suitable size, and use the Object Inspector to set the properties:

 BorderStyle: Dialog

 Caption: Set up new file

 FormStyle: StayOnTop

 276

Create an event handler for the 'cancel' button and add the line:

procedure TForm6.BitBtn2Click(Sender: TObject);

begin

 form6.visible:=false;

end;

Double-click the 'OK' button and add lines to the procedure to create a file

'custom.dat':

procedure TForm6.BitBtn1Click(Sender: TObject);

begin

 with form1 do

 begin

 assignfile(customfile,'custom.dat');

 rewrite(customfile);

 closefile(customfile);

 end;

 form6.visible:=false;

end;

Add a 'uses' instruction below the implementation heading:

implementation

{$R *.DFM}

uses

 unit1;

We now need to set up the customer record and file structures. Bring the

Unit1 program window to the front and add lines below the 'type' heading:

type

 customer=record

 name:string[30];

 maxprice:real;

 minbeds:integer;

 typewanted,landwanted,locwanted:integer;

 end;

Also add customer variables to the Public declarations:

 public

 { Public declarations }

 houserecord:house;

 housefile:file of house;

 customrecord:customer;

 277

 customfile:file of customer;

 end;

Go to the Form1 screen and click 'Customer records/Set up new file' to

create an event handler. Add the line:

procedure TForm1.Setupnewfile2Click(Sender:TObject);

begin

 form6.visible:=true;

end;

Also add unit6 to the 'uses' list:

uses

 SysUtils,....Unit3, Unit5, Unit6;

Build and run the program. Select 'Customer records/Set up new file',

then click the 'OK' button in the confirmation window. Exit from the

program and use Windows Explorer to check that a new file 'custom.dat'

has been created in your ESTATE sub-directory.

The next stage is the 'Add customer record' option. Use the short-cut

button to create a new blank form.

The easiest way to set up the customer input screen is to copy all the

components from Form2:

 278

As with the 'New file' window, drag the mouse across the Form until a

dotted rectangle covers all the components, then click Edit/Copy.

Bring Form7 to the front. Make sure that it is at least as large as Form2,

then click Edit/Paste to transfer a copy of the components.

Change the Edit Box captions to read: 'Customer name', 'Maximum price',

and 'Minimum bedrooms'. Add the word 'wanted' to the caption headings

of the Radio Groups, and insert a 'NO PREFERENCE' option in each

group.

Double-click the 'Customer name' edit box and add a line of program to the

event handler:

procedure TForm7.Edit1Change(Sender: TObject);

begin

 form1.customrecord.name:=edit1.text;

end;

 279

Create similar event handlers for the 'Maximum price' and 'Minimum

bedrooms' Edit Boxes:

procedure TForm7.Edit2Change(Sender: TObject);

begin

 if edit2.text='' then

 form1.customrecord.maxprice:=0

 else

 form1.customrecord.maxprice:=strtofloat(edit2.text);

end;

procedure TForm7.Edit3Change(Sender: TObject);

begin

 if edit3.text='' then

 form1.customrecord.minbeds:=0

 else

 form1.customrecord.minbeds:=strtoint(edit3.text);

end;

Set up a 'clear' procedure:

procedure TForm7.clear;

begin

 edit1.text:='';

 edit2.text:='';

 edit3.text:='';

 radiogroup1.itemindex:=0;

 radiogroup2.itemindex:=0;

 radiogroup3.itemindex:=0;

end;

and add:
 procedure clear;

to the procedure list near the top of the program. Create an event handler for the

'cancel' button which uses the 'clear' procedure:

procedure TForm7.Button2Click(Sender: TObject);

begin

 clear;

end;

Create the event handler for the 'close' button which also uses 'clear':

procedure TForm7.Button3Click(Sender: TObject);

begin

 280

 clear;

 form7.visible:=false;

end;

Include a 'uses' instruction under the implementation heading:

implementation

{$R *.DFM}

uses

 unit1;

It just remains to set up the event handler for the 'save' button. Add the lines:

procedure TForm7.Button1Click(Sender: TObject);

begin

 with form1 do

 begin

 customrecord.typewanted:=radiogroup1.itemindex;

 customrecord.landwanted:=radiogroup2.itemindex;

 customrecord.locwanted:=radiogroup3.itemindex;

 assignfile(customfile,'custom.dat');

 reset(customfile);

 seek(customfile,filesize(customfile));

 write(customfile,customrecord);

 closefile(customfile);

 end;

 clear;

end;

Go to Form1 and click 'Customer records/Add customer record' to

produce an event handler. Insert the line:

procedure TForm1.Addcustomerrecord1Click

 (Sender: TObject);

begin

 form7.visible:=true;

end;

Also add Unit7 to the 'uses' list near the top of the program.

Build and run the program, then select 'Customer records/Add customer

record'. Enter details for the first two customers from the list on page 245.

Where a particular type of house, land or location is not mentioned, select a

'NO PREFERENCE' button as shown in the example on the next page.

 281

Exit from the program. Use the NOTEPAD utility to check that the

customer names now appear in the 'custom.dat' file, then return to the

Delphi editing screen.

We can now move on to the 'Display customer index' option. Create a new

blank form for this. Add unit8 to the 'uses' list near the top of unit1.

 282

Place a List Box on Form8, a Label with the caption 'Customers', and a

Button with the caption 'close':

Set up an event handler for the 'close' button:

procedure TForm3.Button1Click(Sender: TObject);

begin

 form8.visible:=false;

end;

Go to the Form1 screen and click 'Customer records/Display customer

index' to create an event handler. Add a line of program to open the Form8

customer index window:

procedure TForm1.Displaycustomerindex1Click

 (Sender: TObject);

begin

 form8.visible:=true;

end;

Build and run the program. Select 'Customer records/Display customer

index'. The Customer Index window should open, although no names are

displayed yet. Press the 'close' button and the window should disappear.

Return to the Delphi editing screen.

 283

Go to Form8. Click on the dotted grid and press ENTER to bring up the

Object Inspector. Click the 'Events' tab, then double-click alongside

'OnActivate to produce an event handler. Add the lines of program to load

the customer names from disc:

procedure TForm8.FormActivate(Sender: TObject);

begin

 listbox1.clear;

 assignfile(form1.customfile,'custom.dat');

 reset(form1.customfile);

 while not eof(form1.customfile) do

 begin

 read(form1.customfile,form1.customrecord);

 listbox1.items.add(form1.customrecord.name);

 end;

end;

Go back to the Object Inspector for Form8 and set up an event handler for

the 'OnDeactivate' event:

procedure TForm8.FormDeactivate(Sender: TObject);

begin

 form8.visible:=false;

end;

Add a 'uses' instruction below the 'implementation' heading:

implementation

{$R *.DFM}

uses

 unit1;

Build and run the program. When 'Customer records/Display customer

index' is selected this time, the two customers entered earlier should be

listed:

 284

Exit from the program. As in the House records section, we would like the

Customer index to lead to a display screen. Create a new blank form for

this. Use the Object Inspector to set FormStyle to StayOnTop, and

BorderStyle to Dialog. Add 'unit9' to the 'uses' line near the top of unit8.

Double-click the List Box on Form8 to create an event handler, then add the

lines:

procedure TForm8.ListBox1Click(Sender: TObject);

begin

 filepointer:=listbox1.itemindex;

 form8.visible:=false;

 form9.visible:=true;

end;

Include 'filepointer' in the Public declarations section of Unit8:

 public

 { Public declarations }

 filepointer:integer;

Build and run the program. Select 'Customer records/Display customer

index', then click on one of the customer names. A blank window for

Form9 should open. Exit and return to the Delphi editing screen.

The easiest way to set up Form9 is to copy the components from Form4.

Bring the Form4 window to the front, then drag the mouse over the grid to

put a dotted rectangle around all components. Select 'Edit/Copy'. Go to

Form9 and ensure that the window is at least as large as Form4, then select

'Edit/Paste'.

 285

Change the Edit Box and ComboBox captions to: 'Customer name',

'Maximum price £', 'Minimum Bedrooms', 'Property wanted', 'Land

wanted', and 'Location wanted'.

Select the first ComboBox, bring up the Object Inspector, and double-click

the Items property to display the String List Editor. Insert a 'NO

PREFERENCE' entry:

Add 'NO PREFERENCE' entries for the other two ComboBoxes.

 286

Go back to Form9 and click on the dotted grid. Press ENTER to bring up

the Object Inspector. Select the Events tab and set up an 'OnActivate'

procedure. Add the lines to load and display the selected customer record:

procedure TForm9.FormActivate(Sender: TObject);

begin

 with form1 do

 begin

 assignfile(customfile,'custom.dat');

 reset(customfile);

 seek(customfile,form8.filepointer);

 read(customfile,customrecord);

 closefile(customfile);

 end;

 edit1.text:=form1.customrecord.name;

 edit2.text:=floattostrf

 (form1.customrecord.maxprice,ffFixed,8,0);

 edit3.text:=inttostr(form1.customrecord.minbeds);

 combobox1.itemindex:=form1.customrecord.typewanted;

 combobox2.itemindex:=form1.customrecord.landwanted;

 combobox3.itemindex:=form1.customrecord.locwanted;

end;

Go back to the Form9 screen and double-click the 'close' button to create an

event handler. Add the lines:

procedure TForm9.Button1Click(Sender: TObject);

begin

 form9.visible:=false;

 form8.visible:=true;

end;

Include unit1 and unit8 in a 'uses' instruction below the implementation

heading:

implementation

{$R *.DFM}

uses

 unit1,unit8;

Build and run the program. Go to the Customer Index screen and select

each of the customer records in turn. Check that the details are displayed

correctly as shown below.

 287

Add the remaining customers listed on page 245 and check that these have

been added to the customer index, then return to the Delphi editing screen.

Go to From9 and double-click the 're-save edited record' button to create

an event handler. Add the lines:

procedure TForm9.Button2Click(Sender: TObject);

begin

 form1.customrecord.name:=edit1.text;

 form1.customrecord.maxprice:=strtofloat(edit2.text);

 form1.customrecord.minbeds:=strtoint(edit3.text);

 form1.customrecord.typewanted:=combobox1.itemindex;

 form1.customrecord.landwanted:=combobox2.itemindex;

 form1.customrecord.locwanted:=combobox3.itemindex;

 with form1 do

 begin

 assignfile(customfile,'custom.dat');

 reset(customfile);

 seek(customfile,form8.filepointer);

 write(customfile,customrecord);

 closefile(customfile);

 end;

 form9.visible:=false;

 form8.visible:=true;

end;

 288

Build and run the program to check that customer records can be edited

successfully, then return to the Delphi editing screen.

The final step in setting up the Customer records system is the delete record

option. Go to Form9 and double-click the 'delete record' button. Add lines

to the event handler:

procedure TForm9.Button3Click(Sender: TObject);

var

 i:integer;

begin

 with form1 do

 begin

 assignfile(customfile,'custom.dat');

 reset(customfile);

 for i:=form8.filepointer+1

 to filesize(customfile)-1 do

 begin

 seek(customfile,i);

 read(customfile,customrecord);

 seek(customfile,i-1);

 write(customfile,customrecord);

 end;

 seek(customfile,filesize(customfile)-1);

 truncate(customfile);

 closefile(customfile);

 end;

 form9.visible:=false;

 form8.visible:=true;

end;

Build and run the program to check that records can be deleted successfuly,

then return to the Delphi editing screen.

Selecting suitable houses

The final stage of the project is to select suitable houses for each of the

customers. Add another button at the bottom of Form9 to do this:

 289

Use the short-cut button to create a new blank form. Set the FormStyle to

StayOnTop, and the BorderStyle to Dialog.

Add a Label 'Houses selected for', and put an Edit Box alongside it. Place a

List Box in the centre of the Form, and a Button at the bottom with the

caption 'close'.

Double-click the 'close' button to produce an event handler and add the line:

procedure TForm10.Button1Click(Sender: TObject);

begin

 form10.visible:=false;

end;

Return to Form9 and create an event handler for the 'select suitable houses'

button:

procedure TForm9.Button4Click(Sender: TObject);

begin

 form10.visible:=true;

end;

Add Unit10 to the 'uses' list at the top of Unit9, then build and run the

program. Select the 'Display customer index' option and click on one of

the customer names. When the Customer record is displayed, click the

 290

'select suitable houses' button. The blank List Box on Form10 should

appear. Click the 'close' button and this should disappear. Return to the

Delphi editing screen.

The next step is to display the customer's name in the Edit Box at the top of

Form10. Bring Form10 to the front. Click on the dotted grid then press

ENTER to bring up the Object Inspector. Click the Events tab, then double-

click alongside 'OnActivate' to produce an event handler. Add the line:

procedure TForm10.FormActivate(Sender: TObject);

begin

 edit1.text:=form1.customrecord.name;

end;

Also produce an 'OnDeactivate' event handler. This is to ensure that

Form10 is closed neatly if the user selects some other option from the Main

Menu:

procedure TForm10.FormDeactivate(Sender: TObject);

begin

 form10.visible:=false;

end;

Add a 'uses' instruction below the implementation heading:

implementation

{$R *.DFM}

uses

 unit1;

Build and run the program. Select a customer from the Index list and go to

the Customer record display screen. Click the 'select suitable houses' button

and Form10 should appear - this time showing the name of the customer.

Exit and return to the Delphi editing screen.

We can now begin work on the actual selection of suitable houses. A

flowchart for the procedure is given on the next pages.

We begin by opening the 'houses.dat' file so that each of the house records

can be examined. The first record is read into the computer.

We begin by assuming that the current house is suitable for the customer. A

series of checks are then carried out to see if the house is not suitable. If at

the end of all the checks we have found no reason to exclude it, we will

display details of the house in the Form10 List Box.

 291

Flow chart to select suitable houses for a customer:

start

 load a house record

 set found to 'true'

too

expensive?

yes

no set found to 'false'

open the house file

too few

bedrooms?

yes

no set found to 'false'

preference

for type of

house?

yes

no type

correct? yes

no

set found to 'false'

A

B

A

B

 292

found = 'true' ?

yes

no

yes another house

record?

no

 stop

close the house file

display house details

preference

for land?

yes

no land

correct? yes

no

set found to 'false'

preference

for location?

yes

no
location

correct? yes

no

set found to 'false'

A

B

A

B

A

 293

The program uses a Boolean variable 'found' which has the following

meaning:

 found = true A suitable house has been found.

 found = false There is some reason why the current house

 is not suitable for the customer.

The first check carried out is for price; if the house is too expensive then

'found' will be set to false.

A similar check is carried out for number of bedrooms; 'found' will be set

to false if there are not enough bedrooms.

We then come to the check for type of property:

 If the customer has indicated NO PREFERENCE, then there will be no

need to carry out this check. They would be willing to consider any type:

detached house, semi-detached, bungalow or terraced house.

 If the customer has specified a definite type of property, then the check

must be carried out. For example, they may only be interested in buying

a bungalow. If the current house is not the correct type then 'found' will

be set to false.

Similarly, the checks for 'land' and 'location' are only carried out if the

customer specified a definite preference.

Bring the Unit10 program window to the front and find the 'OnActivate'

procedure. Add lines of program to load and check the house records:

procedure TForm10.FormActivate(Sender: TObject);

var

 found,success:boolean;

begin

 edit1.text:=form1.customrecord.name;

 listbox1.clear;

 with form1 do

 begin

 assignfile(housefile,'houses.dat');

 reset(housefile);

 success:=false;

 while not eof(housefile) do

 begin

 read(housefile,houserecord);

 found:=true;

 if houserecord.price>customrecord.maxprice then

 found:=false;

 if houserecord.bedrooms<customrecord.minbeds then

 found:=false;

 294

 if customrecord.typewanted>0 then

 begin

 if houserecord.housetype+1 <>

 customrecord.typewanted then

 found:=false;

 end;

 if customrecord.landwanted>0 then

 begin

 if houserecord.land+1 <>

 customrecord.landwanted then

 found:=false;

 end;

 if customrecord.locwanted>0 then

 begin

 if houserecord.location+1 <>

 customrecord.locwanted then

 found:=false;

 end;

 if found=true then

 begin

 success:=true;

 listbox1.items.add(houserecord.address);

 listbox1.items.add('');

 end;

 end;

 closefile(housefile);

 if success=false then

 listbox1.items.add

 ('No suitable houses found - sorry');

 end;

end;

The procedure begins by opening the house file:

 assignfile(housefile,'houses.dat');

 reset(housefile);

A loop then operates to read each of the house records in turn until the end

of the file is reached:

 while not eof(housefile) do

 begin

 read(housefile,houserecord);

 295

We begin by assuming that the current house is suitable for the customer:

 found:=true;

A check is carried out on the house price. If the price is greater than the

maximum price the customer can pay, found is set to 'false' to indicate that

the house is unsuitable:

 if houserecord.price > customrecord.maxprice then

 found:=false;

The number of bedrooms is checked in a similar way, then we examine the

type of property. The first line looks for a typewanted code of 0, which is

the NO PREFERENCE option. The check only goes ahead if the code is

greater than zero.

 if customrecord.typewanted>0 then

 begin

The next line checks whether the type of property is the same as the type

wanted by the customer. Remember that the code numbers are one greater

for the customer input screen because the NO PREFERENCE option was

inserted as code 0:

 if houserecord.housetype+1 < > customrecord.typewanted then

 found:=false;

The symbols < > taken together mean 'not the same as...'.

The landwanted and locationwanted codes are treated in a similar way.

At the end of all the checks, the Boolean variable 'found' will still be true if

current house is suitable for the customer, so we can display the address:

 if found=true then

 begin

 success:=true;

 listbox1.items.add(houserecord.address);

 end;

 296

There is a possibility that no suitable houses will be found, so a message

should be displayed to indicate this. We have used a Boolean variable

'success' which is set to false at the start of the procedure. It will be reset to

true if any suitable house is found. If 'success' has not been reset and is still

false after checking all the houses, the message is displayed:

 if success=false then

 listbox1.items.add('No suitable houses found - sorry');

We can now test the house selection procedure. Build and run the program.

Begin by checking that all the house and customer records listed on pages

244-5 are present and the details are correct.

Take each of the customers in turn. Compare the customer requirements

given on page 245 with the houses listed on page 244, and work out which

houses meet the customer's requirements. Click the 'select suitable houses'

button and compare the computer output with your list. Convince yourself

that the correct properties are selected each time, then return to the Delphi

editing screen.

It would be useful to display full details of the properties, not just the

addresses. Include 'textline' as a string variable at the start of the Form10

'OnActivate' procedure, then add lines to the program:

 if found=true then

 begin

 success:=true;

 listbox1.items.add(houserecord.address);

 textline:='Price: £'+

 floattostrf(houserecord.price,ffFixed,8,0);

 listbox1.items.add(textline);

 textline:=inttostr(houserecord.bedrooms)+

 ' bedrooms';

 listbox1.items.add(textline);

 case houserecord.housetype of

 0:textline:='Detached house';

 1:textline:='Semi-detached house';

 2:textline:='Bungalow';

 3:textline:='Terraced house';

 end;

 297

 case houserecord.location of

 0:textline:=textline + ' in the town';

 1:textline:=textline + ' in the village';

 2:textline:=textline + ' in the country';

 end;

 listbox1.items.add(textline);

 case houserecord.land of

 0:textline:='with a small garden';

 1:textline:='with a large garden';

 2:textline:='with agricultural land';

 end;

 listbox1.items.add(textline);

 listbox1.items.add('');

Build and run the completed program to check that house details are

displayed correctly for each customer.

