
 136

NINE

Graphs

In this chapter we will look at three ways in which data can be displayed
graphically on the computer, using a histogram, a line graph and a pie
graph.

Histogram

Suppose that the numbers of different types of vehicle passing a recording
point in an hour were:
 cars 368
 heavy lorries 42
 light vans 78
 buses 12

A computer program is required to display the results of this traffic survey.
A histogram (bar chart) would be a suitable method.

Set up a new sub-directory TRAFFIC and save a Delphi project into this.
Use the Object Inspector to maximize the form, and drag the grid to nearly
fill the screen.

Add an image box. Click inside the image box and press ENTER to bring
up the Object Inspector, then set the Width property to 640 and the Height
property to 480. Centre the image on the form. This will be the area in
which the graph is drawn. Now add a panel so that it overlaps the top right
corner of the image box:

 137

The panel will be used for input of the traffic data. Place a string grid on the
panel and set its properties:
 Fixed Rows 0
 ColCount 2
 RowCount 4
 DefaultColWidth 100
 Options:
 goEditing True
 ScrollBars None

Also add a button component with the caption 'plot graph'. Adjust the
panel to a suitable size:

Double-click the dotted grid outside the image box to produce an 'OnCreate'
event handler and add lines to display captions in the string grid:

procedure TForm1.FormCreate(Sender: TObject);
begin
 stringgrid1.cells[0,0]:='cars';
 stringgrid1.cells[0,1]:='heavy lorries';
 stringgrid1.cells[0,2]:='light vans';
 stringgrid1.cells[0,3]:='buses';
end;

Compile and run the program. Check that captions are displayed for the
categories of traffic, then return to the Delphi editing screen.

 138

We now need to set up an array to store the traffic figures when they are
entered in the string grid. Make an entry in the 'public declarations' section:

 public
 { Public declarations }
 vehicles:array[0..3]of integer;
 end;

Next we need a procedure to transfer data from the string grid into the
vehicles array. Click on the string grid and press ENTER to bring up the
Object Inspector. Click the Events tab, then double-click alongside
'OnKeyUp' to create an event handler. Add the lines:

procedure TForm1.StringGrid1KeyUp(Sender:
TObject; var Key: Word; Shift: TShiftState);
var
 y:integer;
begin
 y:=stringgrid1.row;
 if stringgrid1.cells[1,y]='' then
 vehicles[y]:=0
 else
 vehicles[y]:=strtoint(stringgrid1.cells[1,y]);
end;

Compile and run the program to check that the error trapping works
correctly for the string grid. Only integers (whole numbers) should be
accepted. Return to the Delphi editing screen.

The graph drawing takes place when the button below the string grid is
pressed. Double-click the button to create an event handler and add the lines
shown below. The purpose of these are to set the fill colour to white, then
draw a rectangle covering the image box:

 139

procedure TForm1.Button1Click(Sender:TObject);
begin
 image1.canvas.brush.color:=clWhite;
 image1.canvas.rectangle(0,0,640,480);
end;

Compile and run the program, then press the 'plot graph' button. A large
white rectangle should appear with the panel 'floating' above it. Return to
the Delphi editing screen.

When the program is running, it would be convenient if we could turn the
panel on and off each time data is entered or a graph plotted. To do this,
add two buttons at the top of the screen labelled 'show input grid' and 'hide
input grid '. Create an event handler for the 'show input grid' button and add
the line:

procedure TForm1.Button2Click(Sender: TObject);
begin
 panel1.visible:=true;
end;

For the 'hide input grid' button, create the event handler:

procedure TForm1.Button3Click(Sender: TObject);
begin
 panel1.visible:=false;
end;

 140

Run the program to check that the panel can be turned on and off as
required, then return to the Delphi editing screen.

The data entry part of the program is now completed and we can turn our
attention to drawing the actual graph. From our earlier work on graphics,
we know how to draw the lines and rectangles for the histogram. The main
problem is deciding how to fit the histogram onto the screen within the 640
horizontal grid squares and the 480 vertical grid squares of the image area.

We will need to leave space below the graph for the names of the types of
vehicle. It should be all right to start the columns from a base line 400 units
down.

We need to fit four columns into the width of the image box. A suitable
column width is 100 units, with the first column 100 units from the side of
the box.

The next question is to decide how high to make each of the columns. One
solution is to make the tallest column a fixed height, say 300 units, then scale
all the other columns accordingly. To do this, the computer will have to
check the data to find the vehicle total for the highest column - from the test

cars lorries vans buses

?

400

480
100 200 300

0 640

 141

data given above this would be 368 cars. We then calculate a scaling
factor. If we multiply each of the results by this scaling factor, it will
convert vehicle totals to screen units and give the bar heights for the
histogram:

scaling factor = largest bar height / largest vehicle total

 = 300 / 368

Begin the graph by drawing the axes. Add lines to the 'plot graph' button
procedure to draw the vertical and horizontal lines:

procedure TForm1.Button1Click(Sender: TObject);
begin
 image1.canvas.brush.color:=clWhite;
 image1.canvas.rectangle(0,0,640,480);
 image1.canvas.moveto(100,100);
 image1.canvas.lineto(100,400);
 image1.canvas.lineto(550,400);
end;

Compile and run the program. Press the 'plot graph' button and the axes
should appear:

moveto
(100,100)

lineto
(100,400)

lineto
(550,400)

 142

The next step is to write a section of program to calculate the scaling factor
for converting vehicle totals into heights for the columns. This uses the
technique introduced in the last chapter to find the maximum of the numbers
in the vehicle array. We begin by making vehicles[0] the maximum so far,
then a loop checks each of the remaining entries to see if a larger figure can
be found. Add the following lines to the 'plot graph' event handler:

 image1.canvas.moveto(100,100);
 image1.canvas.lineto(100,400);
 image1.canvas.lineto(550,400);
 max:=vehicles[0];
 for count:=1 to 3 do
 if vehicles[count]> max then
 max:=vehicles[count];
 scale:=300/max;
end;

In the final step, the chosen graph height of 300 screen units has been
divided by the maximum vehicle total to give the scaling factor.

We are now ready to draw the first of the columns on the histogram. This
will begin at 100 units across.

cars

?

400

480
100 200

0 640

height = (number of cars) * scaling factor

 height = vehicles[0] * scale

 143

The base line will be at 400 units, and the height of the column will depend
on the number of cars recorded in the array as vehicles[0].

Add the lines below to draw the column. To simplify the calculation, we
have calculated the height and set a value for the across position of the
column before the rectangle is drawn:

 max:=vehicles[0];
 for count:=1 to 3 do
 if vehicles[count]> max then
 max:=vehicles[count];
 scale:=300/max;
 image1.canvas.brush.color:=clRed;
 height:=round(vehicles[0]*scale);
 startx:=100;
 image1.canvas.rectangle(startx,401,
 startx+101,400-height);
end;

Variables will need to be listed at the start of the procedure:

procedure TForm1.Button1Click(Sender: TObject);
var
 max,count,height,startx:integer;
 scale:real;

 144

Compile and run the program using the test data and press the 'plot graph'
button. The 'cars' column should be plotted as shown above.

The other three columns can be plotted in a similar way. Each column starts
100 units further across the screen. Add lines of program to do this; you
may find it easiest to use the Edit/Copy/Paste facility to do this:

image1.canvas.brush.color:=clRed;
height:=round(vehicles[0]*scale);
startx:=100;
image1.canvas.rectangle(startx,401,
 startx+101,400-height);
height:=round(vehicles[1]*scale);
startx:=200;
image1.canvas.rectangle(startx,401,
 startx+101,400-height);
height:=round(vehicles[2]*scale);
startx:=300;
image1.canvas.rectangle(startx,401,
 startx+101,400-height);
height:=round(vehicles[3]*scale);
startx:=400;
image1.canvas.rectangle(startx,401,
 startx+101,400-height);

end;

 145

Compile and run the program with the test data. Return to the Delphi editing
screen.

The graph should be drawn correctly, but the program is longer it needs to
be. We could produce the same graph more neatly with a FOR..TO..DO
loop - this would repeat four times to draw each of the columns in turn. The
loop counter variable could be used to calculate the start position for each of
the columns.

To demonstate how this would work, delete the lines of program which
draw the columns and replace them by the loop shown below. The
procedure becomes:

procedure TForm1.Button1Click(Sender: TObject);
var
 max,count,height,startx:integer;
 scale:real;
begin
 image1.canvas.brush.color:=clWhite;
 image1.canvas.rectangle(0,0,640,480);
 image1.canvas.moveto(100,100);
 image1.canvas.lineto(100,400);
 image1.canvas.lineto(550,400);
 max:=vehicles[0];
 for count:=1 to 3 do
 if vehicles[count]> max then
 max:=vehicles[count];
 scale:=300/max;
 for count:=0 to 3 do
 begin
 image1.canvas.brush.color:=clRed;
 height:=round(vehicles[count]*scale);
 startx:=100+100*count;
 image1.canvas.rectangle(startx,401,
 startx+101,400-height);
 end;
end;

Check that the program gives the same result with the test data.

Our final task to complete the graph is to add captions along the horizontal
axis for the types of vehicle, as shown below. This can be done by the same
loop that draws each of the columns.

 146

Add the lines shown:

 for count:=0 to 3 do
 begin
 image1.canvas.brush.color:=clRed;
 height:=round(vehicles[count]*scale);
 startx:=100+100*count;
 image1.canvas.rectangle(startx,401,
 startx+101,400-height);
 case count of
 0: caption:='cars';
 1: caption:='lorries';
 2: caption:='vans';
 3: caption:='buses';
 end;
 image1.canvas.brush.color:=clWhite;
 image1.canvas.textout(startx+20,410,caption);
 end;
end;

The CASE command uses the loop counter to choose the correct caption,
then the TEXTOUT command puts it onto the screen.

 147

It will be necessary to add 'caption' to the list of variables at the start of the
procedure:

var
 max,count,height,startx:integer;
 scale:real;
 caption:string;

Compile and run the completed progam, and test this with a variety of
vehicle totals.

Line graph

In our next program we will produce a line graph of temperature recordings
by a weather station during a seven day period. The input section of the
program will be very similar to the traffic survey.

Begin by creating a new directory TEMP and save a Delphi project into it.
Use the Object Inspector to maximize the form, and drag the grid to nearly
fill the screen.

Add an image box. Click inside the image box and press ENTER to bring
up the Object Inspector, then set the Width property to 640 and the Height
property to 480. Centre the image on the form. This will be the area in
which the graph is drawn. Now add a panel so that it overlaps the top right
corner of the image box:

 148

The panel will be used for input of the daily temperature data. Place a string
grid on the panel and set its properties:

 Fixed Rows 0
 ColCount 2
 RowCount 7
 DefaultColWidth 100
 Options:
 goEditing True
 ScrollBars None

Also add a button component with the caption 'plot graph'. Adjust the
panel to a suitable size.

Double-click the dotted grid outside the image box to produce an 'OnCreate'
event handler and add lines to display captions in the string grid:

procedure TForm1.FormCreate(Sender: TObject);
begin
 stringgrid1.cells[0,0]:='Monday';
 stringgrid1.cells[0,1]:='Tuesday';
 stringgrid1.cells[0,2]:='Wednesday';
 stringgrid1.cells[0,3]:='Thursday';
 stringgrid1.cells[0,4]:='Friday';
 stringgrid1.cells[0,5]:='Saturday';
 stringgrid1.cells[0,6]:='Sunday';
end;

Now add two buttons above the image box with the captions 'show input
grid ' and 'hide input grid '. These will work in the same was as in the traffic
survey program. Double click the 'show input grid' button and add a line to
the event handler:

procedure TForm1.Button2Click(Sender: TObject);
begin
 panel1.visible:=true;
end;

For the 'hide input grid' button, create the event handler:

procedure TForm1.Button3Click(Sender: TObject);
begin
 panel1.visible:=false;
end;

 149

We now need to set up an array to store the temperature figures when they
are entered in the string grid. Make an entry in the 'public declarations'
section:

 public
 { Public declarations }
 temp:array[0..6]of integer;
 end;

Next we will set up a procedure to transfer data from the string grid into the
temp array. Click on the string grid and press ENTER to bring up the
Object Inspector. Click the Events tab, then double-click alongside
'OnKeyUp' to create an event handler. Add the lines:

procedure TForm1.StringGrid1KeyUp(Sender: TObject;
 var Key: Word; Shift: TShiftState);
var
 y:integer;
begin
 y:=stringgrid1.row;
 if (stringgrid1.cells[1,y]='') or
 (stringgrid1.cells[1,y]='-') then
 temp[y]:=0
 else
 temp[y]:=strtoint(stringgrid1.cells[1,y]);
end;

This is slightly more complicated than procedures we have written before to
transfer numbers into an array because negative values have to be accepted.
The extra part of the IF... line allows the user to type a minus sign in the
string grid without an error message appearing.

Compile and run the program to check that the error trapping works
correctly for the string grid. Only integers (whole numbers) should be
accepted. Return to the Delphi editing screen.

We can turn our attention to the actual graph. The drawing area in the
image box has again been set as 640 horizontal grid squares by 480 vertical
grid squares.

We will need to leave space below the horizontal axis for the names of the
days, so we can make the base line of the graph 400 units down.

A whole week's data will fit conveniently on the graph if the horizontal
distance between days is 80 units, with the vertical axis 100 units from the
edge of the image box, as in the diagram below:

 150

Double-click the 'plot graph' button on the panel to create an event handler.
Add the following lines:

procedure TForm1.Button1Click(Sender: TObject);
var
 x:integer;
begin
 image1.canvas.brush.color:=clWhite;
 image1.canvas.rectangle(0,0,640,480);
 image1.canvas.moveto(100,100);
 image1.canvas.lineto(100,400);
 image1.canvas.lineto(580,400);
 for x:=0 to 6 do
 begin
 image1.canvas.moveto(100+80*x,400);
 image1.canvas.lineto(100+80*x,410);
 end;
end;

100

400

480

0 640

100 180 260

Mon Tue Wed Thur Fri Sat Sun

80

 151

The line:
image1.canvas.brush.color:=clWhite;

sets the fill colour to white, then
image1.canvas.rectangle(0,0,640,480);

draws the white rectangle for the graph area.

The next group of lines:

image1.canvas.moveto(100,100);
image1.canvas.lineto(100,400);
image1.canvas.lineto(580,400);

draw the vertical and horizontal axes.

The final part of the procedure is a loop to draw graduation lines on the
horizontal axis for each day:

for x:=0 to 6 do
begin
 image1.canvas.moveto(100+80*x,400);
 image1.canvas.lineto(100+80*x,410);
end;

Compile and run the program. Press the 'plot graph' button to check that the
axes and graduations are drawn correctly, then return to the Delphi editing
screen.

 152

Names for the days can be written below the graduation lines. We will use a
CASE structure similar to the traffic survey program. Add lines to the loop
so that the procedure becomes:

procedure TForm1.Button1Click(Sender: TObject);
var
 x:integer;
 day:string;
begin
 image1.canvas.brush.color:=clWhite;
 image1.canvas.rectangle(0,0,640,480);
 image1.canvas.moveto(100,100);
 image1.canvas.lineto(100,400);
 image1.canvas.lineto(580,400);
 for x:=0 to 6 do
 begin
 image1.canvas.moveto(100+80*x,400);
 image1.canvas.lineto(100+80*x,410);
 case x of
 0:day:='Mon';
 1:day:='Tue';
 2:day:='Wed';
 3:day:='Thur';
 4:day:='Fri';
 5:day:='Sat';
 6:day:='Sun';
 end;
 image1.canvas.textout(90+80*x,414,day);
 end;
end;

Compile and run the program. Press the 'plot graph' button to check that the
captions for the days are printed.

Return to the Delphi editing screen. We must now consider the vertical axis.

 153

Let us assume that temperatures recorded at the weather station will be in
the range -5° to +25° :

We can put graduation lines on the vertical axis in a similar way to the
horizontal axis. Divisions at intervals of 5° would be suitable. Add another
loop to the 'draw graph' event handler to do this:

 5:day:='Sat';
 6:day:='Sun';
 end;
 image1.canvas.textout(90+80*x,414,day);
 end;
 for y:=0 to 6 do
 begin
 image1.canvas.moveto(100,400-50*y);
 image1.canvas.lineto(80,400-50*y);
 caption:=inttostr(y*5-5);
 image1.canvas.textout(60,393-50*y,caption);
 end;
 image1.canvas.textout(10,220,'deg.C');
end;

100

400

480

0 640

100

25°

-5°

300 screen units =
30° temperature range

 154

The variables y and caption will need to be added at the start of the
procedure:

procedure TForm1.Button1Click(Sender: TObject);
var
 x, y :integer;
 day, caption :string;

The loop repeats seven times to produce each of the graduation lines in turn.
The loop counter, y, is used to calculate how far above the base line each
graduation is drawn:

 for y:=0 to 6 do
 begin
 image1.canvas.moveto(100,400-50*y);
 image1.canvas.lineto(80,400-50*y);

The loop counter value is used to generate the temperature numbers. The y
value is multiplied by 5 because the graduations are at intervals of 5 degrees.
We also subtract 5, so that the first graduation begins at -5 degrees:

 caption:=inttostr(y*5-5);
 image1.canvas.textout(60,393-50*y,caption);

 155

Compile and run the program to check that the graduations on the vertical
axis are displayed correctly. Return to the Delphi editing screen.

The final stage in the program is to draw the line on the graph, using the
input temperature values.

The scaling factor will be 10 screen units for each degree Centigrade. For
each day on the graph, it is necessary to move 80 screen units to the right.

We can draw the line by moving to the starting point for Monday, then use a
loop to continue for each of the remaining six days. Begin by adding a
variable 'count':

procedure TForm1.Button1Click(Sender: TObject);
var
 x,y, count :integer;
 day,caption:string;

then insert the lines of program shown below:

100 180 260

100

400

480

0 640

25°

-5°

10 screen units =
1° temperature

Mon Tue Wed

80 screen units per day

 156

 for y:=0 to 6 do
 begin
 image1.canvas.moveto(100,400-50*y);
 image1.canvas.lineto(80,400-50*y);
 caption:=inttostr(y*5-5);
 image1.canvas.textout(60,393-50*y,caption);
 end;
 image1.canvas.textout(10,220,'deg.C');
 image1.canvas.moveto(100,350-10*temp[0]);
 for count:=1 to 6 do
 image1.canvas.lineto(100+80*count,
 350-10*temp[count]);
end;

Notice that the line drawing commands use a baseline of 350 units. This is
the 0° C position on the graph:

 image1.canvas.moveto(100,350-10*temp[0]);

baseline position

0°C = 350 screen units down

 157

The starting position of the line is calculated using the temperature reading
for Monday, stored as temp[0].

The loop counter is used to select the correct value from the temp array for
each of the other days:

 for count:=1 to 6 do
 image1.canvas.lineto(100+80*count,350-10*temp[count]);

Compile and run the completed program. Try this out with a variety of
temperature values in the range -5° to 25°C.

Pie graph

A third way of displaying data is by means of a pie graph which shows a
circle divided into different categories. A typical use of a pie graph is to
illustrate the numbers of votes for different candidates in an election. For
example:
 Conservative 368
 Labour 1642
 Liberal Democrat 784
 Plaid Cymru 2126

A computer program is required to display these results.

Set up a new sub-directory ELECTION and save a Delphi project into this.
Use the Object Inspector to maximize the form, and drag the grid to nearly
fill the screen.

We will start to set up the program in a similar way to previous graphs:

loop counter

 158

Add an image box to the form. Click inside the image box and press
ENTER to bring up the Object Inspector, then set the Width property to
640 and the Height property to 480. Centre the image on the form. This
will be the area in which the graph is drawn. Now add a panel so that it
overlaps the top right corner of the image box.

The panel will be used for input of the election results. Place a string grid on
the panel and set its properties:
 Fixed Rows 0
 ColCount 2
 RowCount 4
 DefaultColWidth 120
 Options:
 goEditing True
 ScrollBars None

Also add a button component with the caption 'plot graph'. Adjust the
panel to a suitable size:

Double-click the dotted grid outside the image box to produce an 'OnCreate'
event handler and add lines to display captions in the string grid:

procedure TForm1.FormCreate(Sender: TObject);
begin
 stringgrid1.cells[0,0]:='Conservative';
 stringgrid1.cells[0,1]:='Labour';
 stringgrid1.cells[0,2]:='Liberal Democrat';
 stringgrid1.cells[0,3]:='Plaid Cymru';
end;

 159

Compile and run the program. Check that captions are displayed for the
parties, then return to the Delphi editing screen.

We now need to set up an array to store the election results when they are
entered in the string grid. Make an entry in the 'public declarations' section:

 public
 { Public declarations }
 votes:array[0..3]of real;
 end;

The data type 'real' has been used because large numbers of votes might
have to be entered.

Next we need a procedure to transfer data from the string grid into the votes
array. Click on the string grid and press ENTER to bring up the Object
Inspector. Click the Events tab, then double-click alongside 'OnKeyUp' to
create an event handler. Add the lines:

procedure TForm1.StringGrid1KeyUp(Sender:
TObject; var Key: Word; Shift: TShiftState);
var
 y:integer;
begin
 y:=stringgrid1.row;
 if stringgrid1.cells[1,y]='' then
 votes[y]:=0
 else
 votes[y]:=strtofloat(stringgrid1.cells[1,y]);
end;

Compile and run the program to check that the error trapping works
correctly for the string grid. Only numbers should be accepted. Return to
the Delphi editing screen.

Double-click the 'plot graph' button on the panel to create an event handler.
Add the lines:

procedure TForm1.Button1Click(Sender:TObject);
begin
 image1.canvas.brush.color:=clWhite;
 image1.canvas.rectangle(0,0,640,480);
end;

Add two buttons at the top of the screen labelled 'show input grid' and
'hide input grid '. Create an event handler for the 'show input grid' button
and add the line:

 160

procedure TForm1.Button2Click(Sender: TObject);
begin
 panel1.visible:=true;
end;

For the 'hide input grid' button, create the event handler:

procedure TForm1.Button3Click(Sender: TObject);
begin
 panel1.visible:=false;
end;

Run the program to check that the panel can be turned on and off as
required, and that a white rectangle appears on the form when the 'plot
graph' button is pressed. Return to the Delphi editing screen.

The pie graph will be drawn with different coloured sectors representing the
political parties. We will need a key to the colours. Add lines to the 'plot
graph' event handler to do this:

procedure TForm1.Button1Click(Sender: TObject);
var
 i:integer;
 caption:string;

 161

begin
 image1.canvas.brush.color:=clWhite;
 image1.canvas.rectangle(0,0,640,480);
 for i:=0 to 3 do
 begin
 case i of
 0:image1.canvas.brush.color:=clBlue;
 1:image1.canvas.brush.color:=clRed;
 2:image1.canvas.brush.color:=clYellow;
 3:image1.canvas.brush.color:=clLime;
 end;
 image1.canvas.rectangle(20,20+i*30,50,40+i*30);
 case i of
 0:caption:='Conservative';
 1:caption:='Labour';
 2:caption:='Liberal Democrat';
 3:caption:='Plaid Cymru';
 end;
 image1.canvas.brush.color:=clWhite;
 image1.canvas.textout(60,22+i*30,caption);
 end;
end;

This uses a loop to repeat four times for the different political parties. Each
time around the loop:

• A CASE structure sets the fill colour to represent the party:

Conservative blue
Labour red
Liberal Democrat yellow
Plaid Cymru green

• A coloured rectangle is drawn. The distance down the screen depends on
the loop counter i.

• Another CASE structure selects the correct caption.
• The caption is written alongside the coloured rectangle. The distance

down the screen again depends on the loop counter i.

 162

Compile and run the program. Click the 'plot graph' button to check that
the key is displayed, then return to the Delphi editing screen.

Plotting the pie graph will require some mathematical techniques. We begin
by finding the total of the votes for all the four parties using a loop:

 for i:=0 to 3 do
 total:=total+votes[i];

As each secor of the pie graph is drawn, we need to know the number of
degrees for the angle ����.

This will be the difference between the start angle and finish angle for the edges of the
sector.

We can start the first sector at 0 degrees. The finish angle for the first sector will be
given by the formula:

 finish angle:= votes[1]/total * 360

We have just worked out what proportion of the whole 360 degrees should represent the
votes for candidate 1.

The start angle for the second sector will be the finish angle of the first sector:

... and so on around the circle until all four sectors have been drawn.

angle ���� start angle

finish angle

angle ����

start angle

finish angle

 163

In general, the finish angle for sector i will be given by the formula:

 finish angle = start angle + votes[i] / total * 360;

Once we know the start and finish angles of the sector, we can use the 'pie'
command to actually draw the sector on the screen. The 'pie' command
requires us to calculate eight numbers to make it work! It has the form:

 pie (x1, y1, x2, y2, x3, y3, x4, y4);

(x1, y1) and (x2, y2) are the coordinates of the opposite corners of a square
containing the whole pie-graph circle:

The next pair of coordinates (x3, y3) give the position where the start angle
line cuts the pie circle. (x4, y4) is the position where the finish angle line
cuts the circle:

x1, y1

x2, y2

x1, y1

x2, y2

x3, y3

x4, y4

 164

angle ����

The method for finding the points where the sector lines cut the circle uses
SINE and COSINE functions. For example:

These calculations can now be incorporated into the program. Add lines to
the 'plot graph' procedure:

procedure TForm1.Button1Click(Sender: TObject);
var
 i:integer;
 total,startangle,finishangle:real;
 caption:string;
begin
 image1.canvas.brush.color:=clWhite;
 image1.canvas.rectangle(0,0,640,480);
 total:=0;
 startangle:=0;
 for i:=0 to 3 do
 total:=total+votes[i];
 for i:=0 to 3 do
 begin
 case i of
 0:image1.canvas.brush.color:=clBlue;

 3:image1.canvas.brush.color:=clLime;
 end;
 image1.canvas.rectangle(20,20+i*30,50,40+i*30);
 finishangle:=startangle+360*votes[i]/total;
 image1.canvas.pie(200,90,500,390,
 350+round(150*cos(startangle*pi/180)),
 240-round(150*sin(startangle*pi/180)),
 350+round(150*cos(finishangle*pi/180)),
 240-round(150*sin(finishangle*pi/180)));
 startangle:=finishangle;
 case i of
 0:caption:='Conservative';

height = radius * sin (�)

distance = radius * cos (�)

 165

Notice in the 'pie' line:

image1.canvas.pie(200,90,500,390,

we are using a pie circle which fits inside a square with corners at the
coordinates (200,90) and (500,390). This gives the pie circle a diameter of
300 units, or a radius of 150 units.

The centre of the pie circle is at the point (350,240) on the screen. To
calculate the coordinates where the start angle and finish angle lines cut
the circle, we multiply the sin and cos terms by the radius, then add these to
the coordinate for the centre of the circle. For example:

 350+round(150*cos(startangle*pi/180)),

Unfortunately the graphics commands in Delphi and most other
programming languages use radians instead of degrees for measuring
angles. It is necessary to multiply the angle in degrees by pi/180 to convert
to radians.

Add the across
position for
the centre of
the circle

convert the start angle
 from degrees to radians multiply by

the radius

 166

Compile and run the program. Enter the test data and check that the graph
is drawn correctly:

SUMMARY

In this chapter you have:

• Set up an image box with a fixed size of 640 by 480 screen units.
This is a convenient size for drawing graphs

• Used an input grid on a panel which can be turned on and off by
buttons

• Seen how to calculate the height of columns on a histogram using
a scaling factor

• Seen how to calcualate a scaling factor based on the maximum
data value

• Used a loop structure to draw each column and add a caption
• Used a CASE command to select the correct caption for each

column
• Seen how a line graph can cover a fixed range of values on the

vertical axis, and calculated the scaling factor for the vertical axis
• Used a loop to plot a line graph from values stored in an array
• Used the 'pie' command to plot sectors of a pie graph
• Seen how the SIN and COS trigonometric functions can be used

to find points on the circumference of the pie graph for the start
and finish of each sector.

