
 88

SEVEN

Loops and Arrays

When a computer program is running, it is often necessary for program lines

to be repeated a number of times. This is done by means of a loop

structure.

Delphi provides several different kinds of loop - we meet the commonest of

these in the next section...

The FOR..TO..DO loop

To illustrate how lines of program can be repeated, we will write a program

to randomly select lottery numbers. Begin by setting up a sub-directory

called LOTTERY. Start a new Delphi project and save this into the sub-

directory.

Use the Object Inspector to Maximize the form, and drag the grid to nearly

fill the screen. Add a button and panel to the form. Give the button the

caption 'Press to choose your lottery numbers'. Remove the caption from

the panel:

 89

Set the 'Visible' property for the panel to False. Add a memo box to the

panel, and the label 'Your lucky lottery numbers are: ':

Blank out the memo box by using the Object Inspector. Double-click in the

right hand column alongside 'Lines' to bring up the string list editor. Rub

out the text then click OK.

Now we can turn our attention to generating the lottery numbers. There

should be six numbers chosen randomly in the range 1-49.

Create an event handler procedure for the button then add the lines of

program:

procedure TForm1.Button1Click(Sender: TObject);

var

 i,n:integer;

begin

 panel1.visible:=true;

 memo1.clear;

 randomize;

 for i:=1 to 6 do

 begin

 n:=random(49)+1;

 memo1.lines.add(inttostr(n));

 end;

end;

 90

This is quite a complicated piece of program, so it is best to explain it with

the help of a flowchart:

KEY to the symbols used in the flowchart

 start/stop processing input/output decision

start

initialise the random number generator

find a random number in the range 1-49

display the random number

have

6 numbers been

found yet?

stop

yes

no

 91

The line:

 panel1.visible:=true;

makes the panel appear, along with the memo box and label components.

We then blank out any entries in the memo box with:

 memo1.clear;

The program is going to use random numbers, so it is first necessessary to

initialise the random number generator in the computer. This is done by the

command:

 randomize;

The next section of the program involves a loop which operates six times:

 for i:=1 to 6 do

 begin

 {this section of the program is repeated}

 end;

Notice how we use an integer variable (in this case called i) to keep track

of the number of times the loop operates. This variable is known as the

'loop counter'.

Inside the loop, the first line uses the random command:

 for i:=1 to 6 do

 begin

 n:=random(49)+1;

 memo1.lines.add(inttostr(n));

 end;

The random number generator gives a number between a minimum of 0 and

a maximum which is one less than the number in brackets. Random(49)

therefore gives a number in the range 0-48. Since we actually want a

number between 1 and 49, we must add one to this result.

The random number is then added to the memo box and displayed.

Compile and Run the program:

 92

A new set of random numbers is produced each time the button is pressed.

You might notice a problem with the program - sometimes a number occurs

more than once. We will return to the lottery program at the end of the

chapter to solve this, but there are a few more programming techniques

which must be learned first.

The next example program uses a FOR..TO..DO loop to display

multiplication tables. Set up a sub-directory called MULTIPLY and save a

new Delphi project into it. Maximize the form, and drag the grid to nearly

fill the screen.

Place a spin edit component a memo box on the form. Add a label with the

caption 'Multiplication table for ':

Create an event handler by double-clicking the spin edit component. Add

the lines of program:

procedure TForm1.SpinEdit1Change(Sender: TObject);

var

 i,a,b:integer;

 textline:string;

begin

 memo1.clear;

 a:=spinedit1.value;

 93

 for i:=1 to 12 do

 begin

 b:=a*i;

 textline:=inttostr(i);

 textline:=textline +' times ';

 textline:=textline + inttostr(a);

 textline:=textline +' is ';

 textline:=textline + inttostr(b);

 memo1.lines.add(textline);

 end;

end;

The first stage in this procedure is to store the value in the spin edit box as

the variable a.

A loop then operates 12 times, using the variable i as a loop counter. Each

time around the loop a line of text is built up, for example:

 2 times 6 is 12

Click on the spin edit component and press ENTER to bring up the Object

Inspector. Set the MinValue property to 2 and the MaxValue property to

20. Compile and Run the program. Change the number in the spin edit

box and check that the multipliction tables are displayed correctly.

loop counter i

value in the

spin edit box, a

result of the

multiplication

: b = a * i

 94

Arrays

During the course we have been using variables to store data. We can think

of variables as memory boxes inside the computer which can hold different

kinds of information, for example:

 a whole number a decimal fraction text

 adult: integer volume: real airline: string

We will now look at a new way to use variables - as an array:

 length[1] length[2] length[3] length[4]

Arrays are not individual memory boxes but sets of memory boxes like

'pigeon holes'. The array has an overall name, but each of the boxes can be

individually accessed by using an index number. In the example above, the

array is called 'length' and could be used to store information about the

lengths of four planks of wood. The length of the first plank would be

stored in length[1], the second plank in length[2], and so on...

To set up an array we need to say how many boxes are required, and what

type of data is to be stored in each box (whole numbers, decimal numbers,

text, etc.). The length array could be set up with the line of program:

 length: array[1..4] of real;

To see how arrays are used, we will write a simple program to display a

student's timetable.

 95

A student has the following lessons each Monday:

 lesson subject

 1 geography

 2 French

 3 French

 4 maths

 5 computing

 6 computing

You are asked to produce a program which allows the student to enter a

lesson number and the corresponding subject will be displayed.

Begin by setting up a sub-directory LESSONS and save a Delphi project

into it. Place a spin edit component and an edit box on the form. Use the

Object Inspector to set the Font property for both components to Times

Roman : 16 point, or a similar type face.

Set the MinValue property for the spin edit component to 1, and the

MaxValue to 6.

We can store the lesson information in a six-box array:

geography French French maths computing computing

lesson[1] lesson[2] lesson[3] lesson[4] lesson[5] lesson[6]

 96

Set up the array in the Public declarations section of the program:

 public

 { Public declarations }

 lesson:array[1..6] of string;

 end;

Double-click the screen grid to produce a FormCreate event handler. This

will be used to copy the subject names into the lesson array when the

program first runs. We can also initialise the spin edit component and edit

box to show lesson 1:

procedure TForm1.FormCreate(Sender: TObject);

begin

 lesson[1]:='geography';

 lesson[2]:='French';

 lesson[3]:='French';

 lesson[4]:='maths';

 lesson[5]:='computing';

 lesson[6]:='computing';

 spinedit1.value:=1;

 edit1.text:=lesson[1];

end;

The only task left is to produce an event handler for the spin edit component

so that the correct subject will be displayed each time the lesson number is

changed. Double-click the spin edit, then add the following lines to the

procedure:

procedure TForm1.SpinEdit1Change(Sender: TObject);

var

 n:integer;

begin

 n:=spinedit1.value;

 edit1.text:=lesson[n];

end;

This selects the text in the array box corresponding to the number shown in

the spin edit window. Compile and test the finished program:

 97

 Using loops to access arrays

Loop structures are an important way of putting data into each box of an

array, or searching through the array boxes. To show how loops are used,

we will set up a program to record the exam marks for a group of students

and calculate the average mark.

Create a new sub-directory EXAMMARKS and save a Delphi project into

it. Use the Object Inspector to maximize Form1, and drag the grid to nearly

fill the screen.

Place a panel near the top of the form, then add a spin edit component and a

label saying 'Number of students'. Put a button alongisde with the caption

'OK'. Use the Object Inspector to blank out the caption for the panel, and

make sure the Visible property of the panel is set to True. The purpose of

this part of the program is to input the number of students sitting the

examination:

Click on the spin edit component and use the Object Inspector to set the

MinValue to 1 and the MaxValue to 30.

Compile and test the program, then click the cross on the top border to

return to the Delphi editing screen.

 98

We are now going to add components to input the exam results, and display

the average mark. Begin by adding a second panel, as shown above. Use

the Object Inspector to blank out the caption on the panel and set the

Visible property to False.

At the right of the panel put a button with the caption 'calculate average

mark'. Below this add an edit box, and a label with the caption 'Average

mark:'.

On the left hand side of the panel we are going to place a string grid

component - this can be found on the ADDITIONAL menu:

Put the string grid onto the panel, then press ENTER to bring up the Object

Inspector. Set the ColCount property to 1 and the FixedCols property to 0.

One column of boxes should now be shown in the string grid.

Using the Object Inspector for the string grid, double-click on Options to

bring up a list and set the goEditing property to 'True'.

Drag the edges of the string grid so that it is just wider than the column of

boxes, as shown in the illustration above.

Let's now think about how the information will be stored in the computer.

The user of the program will set the spin edit box to show the number of

students sitting the examination - this number can be stored in an integer

variable called 'students'. We will also need an array called 'marks' with

sufficient boxes to hold the exam marks for all the students. Set up these

variables in the public declarations section:

 public
 { Public declarations }

 students:integer;

 mark:array[1..30] of integer;

 end;

string grid

 99

The program begins with the user entering the number of students then

pressing the 'OK' button. At this point, a number of things need to happen.

The first of these are:

 panel 1 disappears and is replaced by panel 2, which displays the string

grid ready for entry of the exam marks,

 the variable 'students' should be set to the value in the spin edit box,

 we need to set up enough rows in the string grid for all the marks to be

entered.

Double-click the 'OK' button to create an event handler and add the lines of

program:

procedure TForm1.Button1Click(Sender: TObject);

begin

 panel1.visible:=false;

 panel2.visible:=true;

 students:=spinedit1.value;

 stringgrid1.rowcount:=students+1;

end;

Compile and run the program. Set the spin edit value to 16 then click the

'OK' button. The string grid should appear and will contain 16 boxes for

entry of the exam marks. Try out the scroll bar alongside the grid, then

return to the Delphi editing screen.

 100

The exam marks for each student should initially be set to zero. This can be

done in the 'OK' button click procedure by a FOR..TO..DO loop which

repeats for each box of the marks array. Add the lines:

procedure TForm1.Button1Click(Sender: TObject);

var

 i:integer;

begin

 panel1.visible:=false;

 panel2.visible:=true;

 students:=spinedit1.value;

 stringgrid1.rowcount:=students+1;

 for i:=1 to students do

 mark[i]:=0;

 stringgrid1.setfocus;

end;

Notice how the loop counter value i is used to change the array index each

time around the loop.

The last line in the procedure:

 stringgrid1.setfocus;

moves the cursor to the string grid ready for the data entry to begin.

One final task before testing the program is to put a heading 'mark %' in

the grey box at the top of the string grid. Do this by double-clicking on the

dotted grid of the form to produce an 'OnCreate' event handler. Add the

line:

procedure TForm1.FormCreate(Sender: TObject);

begin

 stringgrid1.cells[0,0]:='mark %';

end;

This makes use of the numbering system for the boxes (cells) of the string

grid - columns and rows are numbered from zero in the top left corner:

column 0 column 1 . . .etc

row 0

row 1

row 2

column 0 row 0

 101

Compile and run the program. Set the Number of students to 16, then press

'OK'. Begin entering some marks in the string grid, in a similar way to a

spreadsheet. The column of figures should scroll up and down, but notice

that the heading in the first cell is fixed:

Return to the Delphi editing screen. We can now work on the calculation

part of the program. The figures entered in the string grid must first be

transferred into the marks array.

Click on the string grid and press ENTER to bring up the Object Inspector.

Click the 'Events' tab and look down the list to find 'OnKeyUp':

 102

Double click in the right hand column alongside 'OnKeyUp' to produce an

event handler procedure. Add the lines:

procedure TForm1.StringGrid1KeyUp(Sender:TObject;

 var Key: Word;Shift: TShiftState);

var

 n:integer;

begin

 n:= stringgrid1.row;

 if stringgrid1.cells[0,n]='' then

 mark[n]:=0

 else

 mark[n]:=strtoint(stringgrid1.cells[0,n]);

end;

This is similar to the method used to transfer values from an edit box into a

single integer variable. The line:

 n:= stringgrid1.row;

sets n to be the number of the row in the string grid where data has just been

entered. If the cell on that row is blank then the corresponding mark will be

set to zero:

if stringgrid1.cells[0,n]='' then

 mark[n]:=0

otherwise the text from the cell will be converted to an integer number and

stored in the mark array:

 mark[n]:=strtoint(stringgrid1.cells[0,n]);

In this way, each value entered in the string grid will be transferred to the

corresponding box in the mark array:

cell[0,1]

cell[0,2]

cell[0,3]

cell[0,4]

. . . .

67 mark[1]

58 mark[2]

71 mark[3]

39 mark[4]

 103

start

set the mark total to zero

initialise the loop counter i = 1

convert the average to text,

 and display in the edit box

have

all marks been

added yet?

 stop

yes

no

Add the mark for student i to the total

add 1 to i

calculate the average mark:

average = total / students

 104

We finally need a procedure to find the average mark for the group of

students. Double-click the 'calculate average mark' button to create an

event handler and add the lines of program to do this:

procedure TForm1.Button2Click(Sender: TObject);

var

 total,average,i:integer;

begin

 total:=0;

 for i:=1 to students do

 total:=total+mark[i];

 average:=round(total/students);

 edit1.text:=inttostr(average);

 stringgrid1.setfocus;

end;

This calculation is illustrated by the flowchart on the previous page.

Compile, run and test the completed program using suitable data. Check

with a calculator that the average mark has been calculated correctly.

Railway timetable

For our last program in this chapter we will make further use of the string

grid component, this time to display a timetable for the railway service

between Machynlleth and Pwllheli.

The objective of the program is to input the departure time of a train from

Machynlleth, then use information about the journey times between stations

to calculate the arrival time at each of the other stations along the route.

Set up a new sub-directory TIMETABLE, then save a Delphi project into it.

Use the Object Inspector to maximize the form, then drag the grid to nearly

fill the screen.

Place an image box on the grid and display the file ROUTES.BMP as

shown below.

 105

Add the label 'Departure time from Machynlleth' and below this two edit

boxes and the labels 'Hours' and 'Minutes'. Also add a button with the

caption 'show timetable'.

Place a string grid below the edit boxes. Use the Object Inspector to set the

string grid properties:

 Fixed Cols 0

 ColCount 3

 RowCount 7

 DefaultColWidth 100

 ScrollBars None

We will now add column headings and a list of the stations. Double-click

the dotted grid of the form to produce an event handler and add the lines:

procedure TForm1.FormCreate(Sender: TObject);

begin

 stringgrid1.cells[1,0]:='Hours';

 stringgrid1.cells[2,0]:='Mins';

 stringgrid1.cells[0,1]:='Machynlleth';

 stringgrid1.cells[0,2]:='Tywyn';

 106

 stringgrid1.cells[0,3]:='Barmouth';

 stringgrid1.cells[0,4]:='Harlech';

 stringgrid1.cells[0,5]:='Porthmadog';

 stringgrid1.cells[0,6]:='Pwllheli';

end;

Compile and run the program. Check that the station names are correctly

listed in the first column of the string grid.

The journey times between stations are:

These times can be stored in an array called journey. The time from

Machynlleth to Tywyn will be journey[1], the time from Tywyn to

Barmouth will be journey[2], and so on.

Begin by defining the array in the Public declarations section:

 public

 { Public declarations }

 journey: array[1..5] of integer;

 end;

then set up the journey times in the 'FormCreate' event handler:

 stringgrid1.cells[0,4]:='Harlech';

 stringgrid1.cells[0,5]:='Porthmadog';

 stringgrid1.cells[0,6]:='Pwllheli';

 journey[1]:=26;

 journey[2]:=27;

 journey[3]:=22;

 journey[4]:=19;

 journey[5]:=24;

end;

Pwllheli

Porthmadog

Harlech

Barmouth

Tywyn

Machynlleth

24 mins

19 mins

22 mins

27 mins

26 mins

 107

The user of the program will input the departure time from Machynlleth in

hours and minutes using the 24-hour clock. These figures can be stored as

two integer variables, starthours and startminutes; add these in the Public

declarations section:
 public

 { Public declarations }

 journey: array[1..5] of integer;

 starthours, startminutes:integer;

 end;

Create an event handler procedure by double-clicking the 'hours' edit box,

then add lines to transfer the value to the variable starthours:

procedure TForm1.Edit1Change(Sender: TObject);

begin

 if edit1.text='' then

 starthours:=0

 else

 starthours:=strtoint(edit1.text);

end;

Do the same for the 'minutes' edit box:

procedure TForm1.Edit2Change(Sender: TObject);

begin

 if edit2.text='' then

 startminutes:=0

 else

 startminutes:=strtoint(edit2.text);

end;

The next step is to set up the procedure which will calculate and display the

timetable. Double-click the button to create an event handler and add the

lines:

procedure TForm1.Button1Click(Sender: TObject);

var

 hours,minutes:integer;

begin

 hours:=starthours;

 minutes:=startminutes;

 if (hours>=0) and (hours<=23) then

 if (minutes>=0) and (minutes<=59) then

 begin

 stringgrid1.cells[1,1]:=inttostr(hours);

 stringgrid1.cells[2,1]:=inttostr(minutes);

 end;

end;

 108

This procedure begins with some 'error trapping' to avoid incorrect data

being accepted. The IF . . conditions check that an hours value between 0

and 23 has been entered, and that the minutes value is between 0 and 59.

The calculation is only carried out if these conditions are true.

The lines of program:

 stringgrid1.cells[1,1]:=inttostr(hours);

 stringgrid1.cells[2,1]:=inttostr(minutes);

display the departure time on the 'Machynlleth' line of the string grid.

Compile and run the program to test the data entry, then return to the editing

screen.

We can now use a FOR . . TO . . DO loop to add on the journey time and

display the arrival at each of the other stations. The loop repeats five times,

for each leg of the journey.

Add lines to the ButtonClick procedure as shown below:

 109

procedure TForm1.Button1Click(Sender: TObject);

var

 hours,minutes,i:integer;

begin

 hours:=starthours;

 minutes:=startminutes;

 if (hours>=0) and (hours<=23) then

 if (minutes>=0) and (minutes<=59) then

 begin

 stringgrid1.cells[1,1]:=inttostr(hours);

 stringgrid1.cells[2,1]:=inttostr(minutes);

 for i:=1 to 5 do

 begin

 minutes:=minutes+journey[i];

 if minutes>59 then

 begin

 minutes:=minutes-60;

 hours:=hours+1;

 end;

 stringgrid1.cells[1,1+i]:=inttostr(hours);

 stringgrid1.cells[2,1+i]:=inttostr(minutes);

 end;

 end;

end;

The line:

minutes:=minutes + journey[i];

adds the journey time to the next station.

If the number of minutes becomes greater than 59, we need to move to the

next hour. This is done by the lines:

 if minutes>59 then

 begin

 minutes:=minutes-60;

 hours:=hours+1;

 end;

Finally we display the new hours and minutes values on the next row of the

string grid. The loop counter variable i is used to give the correct row

number where the data will be printed:

 stringgrid1.cells[1,1+i]:= inttostr(hours);

 stringgrid1.cells[2,1+i]:= inttostr(minutes);

row number, which increases

each time around the loop

 110

Compile and try out the program.

In most cases the timetable is correct, but a problem occurs for trains

completing their journeys after midnight, as in the example below. The

maximum hour value allowed is 23, after which the hour should return to 0.

An addition to the ButtonClick procedure is needed to correct this problem:

Insert another IF . . condition after the section which dealt with minutes:

 if minutes>59 then
 begin

 minutes:=minutes-60;

 hours:=hours+1;

 end;

 if hours>23 then

 hours:=0;

 stringgrid1.cells[1,1+i]:=inttostr(hours);

 111

Compile, run and test the completed program. This should now show all

times correctly:

Before finishing the chapter we have one more task to complete...

An improved lottery number
program

You may remember a problem with the lottery

program we produced earlier: the same number might be selected more than

once. We can now solve this, and also improve the screen display for the

program.

Reload the project saved in the LOTTERY sub-directory. First we will

change the screen display so that the lottery numbers are shown as a row of

numbered balls:

Go to the Form1 screen and double-click the 'Choose numbers' button to

bring up the event handler procedure. Delete the lines beginning 'panel1.'

and 'memo1.'. Add the lines shown below:

procedure TForm1.Button1Click(Sender: TObject);

var

 i,n:integer;

begin

 randomize;

 canvas.font.name:='Times New Roman';

 canvas.font.size:=18;

 for i:=1 to 6 do

 begin

 n:=random(49)+1;

 canvas.ellipse(100+i*80,200,150+i*80,250);

 112

 canvas.textout(114+i*80,210,inttostr(n));

 end;

end;

The lines:

canvas.font.name:='Times New Roman';

canvas.font.size:=18;

set the type face to Times New Roman, 18 point size. The line:

canvas.ellipse(100+i*80,200,150+i*80,250);

draws a circle with a background colour white. The position of the circle

depends on the loop counter i. Each circle is 80 screen units further to the

right. The line:

canvas.textout(114+i*80,210,inttostr(n));

converts the lottery number n into a text string, then displays it in the circle.

Return to the Form1 grid. Click on the panel containing the string list and

label, then press the DELETE key to remove these components which are

no longer needed.

Compile and run the program. Check that the number display works, but

notice that there is still the problem of the same number occuring more than

once. Return to the Delphi editing screen.

To avoid duplication of numbers, the stategy we can follow is:

 Record each number in an array

 Before accepting a new number, check that it isn't already in the

array - if so, choose again!

The flow chart for the number selection is quite complicated:

 113

add 1 to i

 display this lottery number

 stop

set used to 'false'

get a random number n in the range 1-49

is this the first

lottery number?
yes

no

select the first lottery

number in the array

is this the same as

the new number? yes

is used = 'true'?
yes

set used to 'true'

another

 lottery number to

 check? yes

select the next

lottery number

in the array
no

have six

numbers been

selected?

yes

store new number n in array box num[i]

start

initialise the loop counter i = 1

no

no

no

 114

The selection of numbers involves several loops. We can make use of a

Boolean variable 'used' to check whether each new number has already been

used:

 used = true means 'the number has already been used - choose again'

 used = false means 'this is the first time the number has been chosen'

When we select the first lottery number there is no need for a check to be

made. We just store the number in the array box NUM[1].

For the second lottery number, we must check if it is the same as NUM[1],

and go back to choose a different number if necessary. Once a different

number is selected, this will be stored as NUM[2].

For the third number, we must check that it is different to both NUM[1] and

NUM[2].... and so on until all six lottery numbers have been chosen. In

this way, they will all be different. Try to follow how this works on the

flowchart. Go to the Button click procedure and add the lines:

procedure TForm1.Button1Click(Sender: TObject);

var

 i,j,n:integer;

 num:array[1..6] of integer;

 used:boolean;

begin

 randomize;

 canvas.font.name:='Times New Roman';

 canvas.font.size:=18;

 for i:=1 to 6 do

 begin

 repeat

 used:=false;

 n:=random(49)+1;

 if i>1 then

 begin

 for j:=1 to i-1 do

 begin

 if num[j]=n then

 used:=true;

 end;

 end;

 until used=false;

 num[i]:=n;

 canvas.ellipse(100+i*80,200,150+i*80,250);

 canvas.textout(114+i*80,210,inttostr(n));

 end;

end;

 115

Compile and run the program. Click the button a number of times to select

sets of lottery numbers. Convince yourself that the six numbers in each set

are always different.

SUMMARY

In this chapter you have:

 used a FOR..TO..DO looop to repeat sections of program a specified

number of times

 used the random number generator

 seen how a loop structure can be represented on a program flowchart

 made use of the loop counter variable in calculations which take place

inside the loop

 seen how sets of data can be stored in arrays

 used index values to save data in particular memory locations within an

array

 used index values to display data from particular memory locations of an

array

 set up a string grid by specifying the number of columns and rows

required

 accessed particular cells of a string grid using the column and row index

numbers

 used a FOR..TO..DO loop to copy data into all the memory locations of

an array

 used a FOR..TO..DO loop to find the total of a set of integers in an array

 seen examples of error trapping which can be built into a program

