SEVENTEEN

Queues

We are all familiar with the concept of a queue:

back of the
gqueue _ front of the
» queue
next person .
joins * next person
leaves

Queues play an

important role in computer systems, for example:

» If several computers are sharing the same priatgueue can be used to
store documents arriving while the printer is busy.

* A queue is used to store key presses receivedtfierkeyboard, so that
they are processed in the correct order.

Queues are also often used in computer programssre that data is dealt

with in the correct sequence. The simplest wagetibup a queue structure

in a program is to use an array:

front pointe To operate a queue

4— back pointer structure, two pointers are
required:

» the back pointer shows
where thenext data item
will be added to the
array,

 thefront pointer shows
where thenext data item
will leave the array.

O~NO UL WN P

Fred 4—— front pointe

Mary
Johr

Initially the back pointer

points toarray box 1, but

l : it moves downwards as
back pointer items are added. The back

pointer always shows

where thenext item will be

added.

O~NO UL WN P

363

1 . .
- If an item is removed from
4— front pointe
:23 \I;/(I;ry P the queue, théront pointer
r
| back point moves _downwards. The
4 ack pointer front pointer always shows
> the position where theext
g itemwill leave the array.
8
1 . .
. If we continue to add items
é \I;/Iahry ‘ front pointe to the queue, eventually the
. C?] n the back pointer moves
- ris beyond the last array box.
5 Swanh Once this happens, no
; Sf"“a further items can be added
3 Sltz?/e to the queue.

4—— Dback pointer

Let's see how this queue structure can operatecomguter program. Set
up a new directory QUEUE and save a Delphi projett it. Use the
Object Inspector tonaximize the Form, and drag the form grid to nearly fill
the screen.

Add components to thieormas shown above:

364

e Towards the left of th&orm put two Edit boxes, with Labels alongside
captionedftont pointer' and back pointer'.
* In the centre of thEorm add aString Grid. Set the properties:

ColCount 2
RowCount 9
DefaultColWidth 100
ScrollBars None

e Towards the upper right of theorm put a Button with the caption
‘remove item

« Towards the lower right of thEorm put anEdit Box, and below it a
Button with the captionddd item'.

Compile and run the program to check that the comapts are displayed
correctly, then return to the Delphi editing screen

Double-click the Form grid to produce an 'OnCreavent handler, then add
the lines of program:

procedure TForml.FormCreate(Sender: TObject);
var
iiinteger;
begin
with stringgrid1 do
begin
cells[0,0]:="array index’;
cells[1,0]:="'data’;
fori:=1to 8 do
begin
cells[0,i]:=inttostr(i);
data[i]:="****";
cells[1,i]:=data[i];
end;
end;
front:=1,;
back:=1;
editl.text:=inttostr(front);
edit2.text:=inttostr(back);
end;

The procedure begins by writing captions for thieiems of the string grid:
with stringgrid1 do
begin

cells[0,0]:="array index’;
cells[1,0]:='data’;

365

The queue is going to be set up using an arraygbt enemory locations as
shown in the diagrams on the previous page. Weausep to put the entry
w*+* ' into each of the array boxes to indicate thatlata has been entered
yet:
fori:=1to 8 do
data[i]:="****",

The loop displays these entries in tha&t&' column of thestring grid:
cells[1,i]:=datali];

The front and back pointers for the queue are hathlised to 1. This
represents the starting position for an empty quéeliee pointer values are
then displayed in thedit boxes on the form:

front:=1,

back:=1;

editl.text:=inttostr(front);

edit2.text:=inttostr(back);

Go to the public declarations section near the ¢bpJnitl and add the
variables:
{ Public declarations }
front,back:integer;
data:array[1..8] of string;

Compile and run the program. Check that #reng grid is correctly
displaying the eight **** * values from the empty data array, and that
front andback pointer positions are both shownlas

gFot ______________________________________ EEREI BEE

array index |data ‘
; remave item

i

front pointer D

i

back pointer D

i

i

11

I
st |

add item

Return to the Delphi editing screen. Double-clibk add item' button to
create an event handler, then insert the lines:

366

procedure TForm1.Button2Click(Sender: TObject);
begin
if edit3.text>" then
begin
data[back]:=edit3.text;
back:=back+1;
display;
edit3.text:=";
edit3.setfocus;
end;
end,

The purpose of this procedure is to add an entthiealata array. We begin
with an error trapping line to check that an ehiagbeen typed into thedit
box:

if edit3.text >' ' then

begin
If valid data is available, this is transferrednfrtheedit box to the data array
at the position indicated by thiack pointer. (Remember that new data joins
the back of the queue):

data[back]:=edit3.text;
The back pointer is moved down by one position, ready for hext data
item to be added:

back:=back+1;
A proceduredisplay' will then update thetring grid entries to show the
new contents of the data array, and ¢dg box entries to show the new
pointer values:

display;

The next step is to write thdisplay' procedure. Go to the bottom of the
program and insert the lines:

procedure TForm1l.display;
var
iiinteger;
begin
fori:=1to 8 do
stringgridl.cells[1,i]:=datali];
editl.text:=inttostr(front);
edit2.text:=inttostr(back);
end;

Add display' to the list of procedures near the top of thegpam:

procedure FormCreate(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure display;

367

Save your program so far, then compile and rurEmter a series of names
by typing in the edit box and clicking theedd item' button each time. Each
new name should appear in the string grid, andpi&tion of the back
pointer should change. Notice that the back pomiteays gives the number
of the array element where the next name will ledd

|27 |28 |50 @ |z P =1E]x]

array index |data
: remove item
Andre

front pointer El
2 Brian
3 Charles
4 Dafydd
back pointer 5 Edward
; Frank
7 George
7 Henry add item
Project] |

o General protection fault in module PROJECT1 EXE at 0004 2CF3.

Eight names can be added successfuly, but prolileemsoccur. There are no
memory locations available in treata’ array for a nineth or tenth name, and this
leads to an error which stops the program fromingan

The simplest way of avoiding difficulties is to dlde theadd item' button and
edit box as soon as the eighth name has been enteredo the button click
procedure and add the lines:

procedure TForm1.Button2Click(Sender: TObject);
begin
edit3.text:=";
edit3.setfocus;
if back>8 then
begin
button2.enabled:=false;
edit3.enabled:=false;
end;
end;
end;

368

Compile and run the program, then re-enter thedatst. This time, thadd
item' button should bgreyed out as soon as eight names have been entered:

array index [data
remove item
Andre

Brian

front pointer El

Charles
Dafydd
Edward

George

Henry

back pointer E

Q| = | M| | 2| P3| —

Return to the Delphi editing screen. We can now twr attention to removing
data from the queue. Double-click tremove item button to produce an event
handler, then add the lines:

procedure TForm1.Button1Click(Sender: TObject);
begin

data[front]:="***";

front:=front+1;

display;
end;

This empties the data array box at the positionthef front pointer.
(Remember that data items leave from the fronthefdueue.) The front
pointer is then moved down one place, ready to riaekposition for the
next data item to leave the queue.

Compile and run the program. Enter several nathes, check that they can
be removed by clicking the button. This should kydyut it is possible to
keep selecting theemove item option even if the queue is empty. The
front pointer keeps increasing, and eventuallyathesrror will occur and the
program will stop.

Return to therémove iten button click procedure and add an instruction to

disable the button as soon as the queue becomey eittis occurs when
the front pointer has moved to the position oflthek pointer:

369

procedure TForm1.Button1Click(Sender: TObject);
begin
data[front]:="***";
front:=front+1;
display;
if front=back then
buttonl.enabled:=false;
end,

We must, however, remember to enable the buttom aigmore items are
entered. Go to thadd item' button click procedure and add a line:

procedure TForm1.Button2Click(Sender: TObject);
begin
if edit3.text>" then
begin
data[back]:=edit3.text;
back:=back+1;
buttonl.enabled:=true;
display;

Compile and run the program to check that itemsbeaadded and removed
correctly, then return to the Delphi editing screen

A circular queue

The program works, but we cannot operate the gimueery long before
before running out of memory space in the arrays sAon as box 8 is
reached, no further entries are possible:

array index |data

front pointer

back pointer E

Q| =~ | | S| | P =

= i3 i
<

A simple way to solve this problem is to reuse ¢hgpty memory locations
at the start of the array where data items have teleted:

370

back
pointer
where the
next item
will join the

front pointer
where the
next item will
leave the

The queue can be treated as a circular data steuctA pointer passing
position 8 returns to the start of the array atitys 1. This allows the
gueue to continue indefinitely, provided that tbéat number of names in
the queue at any one time never exceeds the eiglytl@oxes available.

To implement the circular queue, it is necessaynélke a few modifications to
the program. Go first to the '‘add item' buttaokcprocedure and add the lines
indicated:

procedure TForm1.Button2Click(Sender: TObject);
begin
if edit3.text>" then
begin
data[back]:=edit3.text;
back:=back+1;
buttonl.enabled:=true;
if back>8 then
back:=1;
display;
edit3.text:=";
edit3.setfocus;
if back=front then
begin
button2.enabled:=false;
edit3.enabled:=false;
end;
end;
end;

The command:
if back>8 then
back:=1;
resets thédack pointer to position 1 when it passes the end efitinay.

371

The section of program:
if back=front then
begin
button2.enabled:=false;
edit3.enabled:=false;
end;
disables théadd item' button and edit box whenever the queue becomes
full.

Note: Thefront and back pointers are at the same position in the array
whenever the queue is eitHetl or empty. In this case we know the queue
must befull because the pointers have become equal as asésadiding an
item.

Go now to theremove item button click procedure and add the lines:

procedure TForm1.Button1Click(Sender: TObject);
begin
data[front]:="****;
front:=front+1;
button2.enabled:=true;
edit3.enabled:=true;
if front>8 then
front:=1;
display;
if front=back then
buttonl.enabled:=false;
end;

The lines:

button2.enabled:=true;

edit3.enabled:=true;
ensure that theadd item' button andedit box are enabled whenever there is
an empty space available in the array to acceptaitem.

array index |data
- remove item

John
Keith

AR

front pointer

TEEE

- I

George

Henry add item

back pointer D

SO = | M| | 2| M

372

Compile and run the program. It should now be ésso add and delete
names from the queue, with the pointers operatiragdircular structure as in
the diagram above.

Our next project illustrates how a queue structae be incorporated into a
data processing program:

'_ Appliuaﬁun Airport landings

A busy airport is being expanded by the
addition of extra facilities. The plan is to belealbo accept one
aircraft landing per minute at peak capacity. Tdie traffic
controllers are concerned to ensure that the iseckaraffic in the
airspace around the airport will not jepordise daéety of aircraft
waiting to land, and they have asked for a simutatf the aircraft
arrivals to be carried out.

The simulation will be based on two input valuasivals frequency

andlanding probability :

e The arrivals frequency is the number of aircraft arriving in the
airspace around the airport each hour.

* In ideal conditions, one aircraft can land eachute@n However,
there are times when a runway cannot be used eeapevious
aircraft is not yet clear or the runway surfaceasg checked by
mainteneance crews. Tlending probability is the percentage
chance that a runway is clear and available foaiemaft to land
during a particular minute.

At present the airport has a single runway andahéing probability
is 50%. If a second runway is built, it is expected ttta landing
probability will increase t&0%.

A program is required which will input tharrivals frequency and
landing probaility, then simulate three hours of operation of the
airport.

The air traffic control authority has specifiedtthae time any aircraft
has to wait to land must not exceed 30 minutese the program to
find the maximum number of aircraft which can uke &irport per
hour with the current single runway, and how maaytpur could be
handled if the second runway is built.

373

To begin the simulation program, set up a new thrgcLANDING and
save a Delphi project into it. Use the Object &dpr to maximize the

Form, and drag the form grid to nearly fill theesem.

- run simulation |- - -

Add components to thfeorm as shown above:
» On the left of thd=orm put aList Box.
» To the right put afedit Box and theLabels: "Aircraft arriving ' and

‘per hour'.
e Below this put anotherEdit Box and the Labels: 'Landing

probability ' and %"
+ Complete the Form by adding Button with the captionrtn
simulation'.

Double-click the 'Aircraft arrivingEdit Box to produce an event handler,
then add the lines:

procedure TForml1.Editl1Change(Sender: TObject);
begin
if editl.text="then
freq:=0
else
freq:=strtoint(editl.text);

end;

Double-click the 'landing probability’ Edit Box ars#t up a similar event
handler:

374

procedure TForml1.Edit2Change(Sender: TObject);
begin
if edit2.text="then
prob:=0
else
prob:=strtoint(edit2.text);
end;

Add the variabledreq' and prob' to the Public declarations section:

public

{ Public declarations }
freq,prob:integer;
end;

Compile and run the program. Check that the 'Aftarriving' and 'Landing
probability' Edit Boxes are error trapped to accept integer numbers, then
return to the Delphi editing screen.

Go to the Public declarations sectiorFofml and add an array:

{ Public declarations }
freq,prob:integer;
arrive:array[1..180] of integer;

This array has 180 memory locations which will lsedito represent the
180 minutes of the simulation period. We can agyeato put numbers in
each array box to show the number of aircraft mgiabove the airport in
any particular minute, for example:

ARRIVE array

200012 1102100001 D R.

23 ... minute ... 18!

In this case:
e 1 aircraft arrives in minute 1
e 2 aircraft arrive in minute 2
e no aircraft arrive in minute 3, etc....

Before the simulation runs we will know therival frequency for the
aircraft. Supposing that we choose a valu®&®gircraft per hour. This
will mean that:

« 50 aircraft arrive between minute 1 and minute 60

375

» 50 more aircraft arrive between minute 61 and 12€xc...
Within each hour, however, we will assume thatahe/als which add up to
these totals are randomly distributed - arrivalesmcannot be planned
precisely due to wind speeds and other factorstafte the flights. An
algorithm for setting up the ARRIVE array is thenes:

LOOP for minute from 1 to 180
Set the arrivals for that minute to zero
. END LOOP

1
2
3
4. Initialise the random number generator
5
6
7

. LOOP for each of the 3 hours

LOOP for each of the aircraft arrivingtinour
Get a random number to choos@atsduring
the hour when this aircraft \aittive
8. Add 1 aircraft to the number\ang in the
chosen minute
9. END LOOP
10. END LOOP

Go to the end of the program and add a procedurigdls' to implement
this algorithm:

procedure TForml.arrivals;
var
i,n,hour,minute:integer;
begin
for i:=1 to 180 do
arrive[i]:=0;
randomize;
for hour:=0to 2 do
begin
for i:=1 to freq do
begin
n:=random(60)+1;
minute:=(hour*60)+n;
arrive[minute]:=arrive[minute]+1;
end;
end;
end,

376

Add ‘arrivals' to the list of procedures at the top of the Unit

type
TForm1 = class(TForm)

pro.c'é.dure Edit2Change(Sender: TObject);
procedure arrivals;

Double-click therun simulation' button to create an event handler and add
the lines of program:

procedure TForm1.Button1Click(Sender: TObject);
var
minute:integer;
begin
arrivals;
listbox1.clear;
for minute:=1 to 180 do
begin
display(minute);
end;
end,

This begins by calling tharrivals' procedure to set up the arrival times for
aircraft during the simulation. We then begin apovhich will repeat for
each of the 180 minutes of the simulation peridéach time around the loop
we will call another procedurelisplay' to give current information about
aircraft arriving, landing or waiting to land. Bhwill allow us to monitor
what is happening at the airport.

Go to the end of the program and add dirsplay' procedure:

procedure TForm1l.display(minute:integer);

var
textline:string;

begin
textline:="Minute '+inttostr(minute);
listbox1.items.add(textline);
textline:="Aircraft arriving: '+

inttostr(arrive[minute]);

listbox1.items.add(textline);
listbox1.items.add(");

end;

Also adddisplay to the procedure list at the top of Unit 1:
TForm1 = class(TForm)

procedure arrivals;

377

procedure display(minute:integer);
Compile and run the program. Enteranval frequency of 50 aircraft per
hour, and danding probability of 50%, then press theun simulation’
button. The numbers of the minutes from 1 to 18kl be displayed in the
List Box, along with the numbers of aircraft arriving dgritne minute:

Minute 1 -
Aircraft arriving: 0

Minute 2
Aircraft arriving: 1 Aircraft arriving

Minute 3 per hour

Aircraft arriving: 1

Minute 4
Aircraft arriving: 3

Minute b %

Aircraft arriving: 2

Landing probability

Minute &
Aircraft arriving: 1

Minute 7
Aircraft arriving: 1

Minute § -

You might check that the total numbers of airceaftiving during the first
hour (minutes 1 - 60) add up to the arrival frequyenf 50 which we
specified. Try different arrival frequencies, theturn to the Delphi editing
screen.

The next step is to use a random number to decltether the runway is
clear for landings. Go to theuh simulation' button click procedure and
add the lines:
procedure TForml1.Button1Click(Sender: TObject);
var
n, minute:integer;
begin
arrivals;
listbox1.clear;
for minute:=1 to 180 do
begin
n:=random(100);
if n<=prob then
runwayclear:=true
else
runwayclear:=false;
display(minute);

378

This makes use of a number line technique. Weirobtaandom number in
the range 0-99, then compare this to peecentage probability for the
runway being clear. Suppose the probability is 78% would mean that a
landing is possible if the random number is beldw But the runway is not
available if the number is 75 or more:

landing
probability
| | |
| | |
0 75 99
runway available for landings ‘ ‘ runway not availablé

Add ‘runwayclear' to the list of variables under the Public dedciares
heading:

public
{ Public declarations }
freq,prob:integer;
runwayclear:boolean;

We also need to include a message about the rumwake display
procedure. Insert the lines:

procedure TForm1l.display(minute:integer);
var
textline:string;
begin
textline:='"Minute '+inttostr(minute);
listbox1.items.add(textline);
textline:="Aircraft arriving: '+
inttostr(arrive[minute]);
listbox1.items.add(textline);
if runwayclear then
listbox1.items.add
(‘'Runway clear for landing’)
else
listbox1.items.add('Runway not available');
listbox1.items.add(");
end;

Compile and run the program. A message about the stf the runway
should be shown for each minute. Return to theld&diting screen when
you have tested this.

379

Minute 1 :
Aircraft arriving: 1
Runway clear for landing

Minute 2 Aircraft arriving
Aircraft arriving: 0

Runway not available per hour

Minute 3
Aircraft arriving: 3
Runway not available

Minute 4 %

Aircraft arriving: 1
Runway clear for landing

Landing probability

We are now ready to tackle the main objective efdimulation - to find the
amount of time that aircraft have to wait above dhiport before being able
to land. This will require a queue structure toorel the arrival time of each
aircraft.

To see how the queue will work, consider the foitaysequence of events:
minute 8 2 aircraft arrive
minute 9 1 aircraft arrives
minute 10 2 aircraft arrive

We record each arrival by entering tinéhute number in the queue:

1 2 3 4 5 6 78 9 10 99 100

8| 8 9| 10 10

front pointer]\ L back pointer

New arrivals are entered at the position oftiaek pointer, then the pointer
moves forward one space.

Suppose that it is now minute 11. The runwayaarlso one of the aircraft

which arrived inminute 8 can land. This is removed from the quesckthe
front pointer is moved forward on place:

1 2 3 4 5 6 78 9 10 99 100

8 9 10 10

front pointer]\ L back pointer

380

We know that the aircraft arrived minute 8 and landed iminute 11, so
the waiting time must have be8minutes

We can go on adding new aircraft to the queue ag amrive above the
airport, and removing them from the queue when tlaay, until the
simulation period is completed. Each time an aftdands, we calculate the
waiting time with the formula:

waiting time = (minute of landing) - (minute of arival)

The queue can be represented as an array usirtgdieiques we learned
earlier in this chapter. We must allow for the maxm number of aircraft
which could be in the queue at any time - 100 shdel more than enough
array boxes.

Begin by adding extra variables to feblic declarations section:

{ Public declarations }
freq,prob:integer;
runwayclear:boolean;
arrive:array[1..180] of integer;

gueue:array[1..100] of integer;
front,back,waittime:integer;

The next step is to add lines of program to tine Simulation' button click
procedure. These will initialise the empty quetieen record aircraft
arrivals:
procedure TForml1.Button1Click(Sender: TObject);
var
n, i, minute:integer,;
begin
arrivals;
listbox1.clear;
front:=1,;
back:=1;
for minute:=1 to 180 do
begin
n:=random(100);
if n<=prob then
runwayclear:=true
else
runwayclear:=false;
if arrive[minute]>0 then ADD
begin THIS
for i:=1 to arrive[minute] do
begin
queue[back]:=minute;
back:=back+1,;

381

if back>100 then
back:=1;
end;
end;
display(minute);
end;
end;

The lines:
front:=1;
back:=1;
set the front and back pointers to the startingtipos for an empty queue.

The section of program:
if arrive[minute]>0 then
begin

end;
end;
only operates if there is at least one aircrafivimg during the current
minute. We then begin a loop:
for i:=1 to arrive[minute] do
which repeats for each of the aircraft arriving.

The minute number is stored in the array at the position of thack
pointer, then the pointer is moved forward one place:
gueue[back]:=minute;
back:=back+1;

arrived in
minute 23

arrived in
minute 22

back pointer
K where we will
store the arrivi
time of the nex
aircraft which

reaches the

arrived in
minute

front pointer
showing the
arrival time of
the next aircraft
which will land

airport

We operate the queue as a circular structure, &otlie pointer returns to
position 1 after passing the end of the array:
if back>100 then

382

back:=1;
We must now arrange for aircraft to leave the queten they land. A
further set of lines must be inserted in then'simulation’ button click
procedure to do this:

if arrive[minute]>0 then
begin
for i:=1 to arrive[minute] do
begin
gqueue[back]:=minute;
back:=back+1,;
if back>100 then
back:=1;
end;
end;

planelanded:=false; ADD
if runwayclear then THIS
begin
if front<>back then
begin
planelanded:=true;
waittime:=minute-queue[front];
front:=front+1;
if front>100 then
front:=1,
end;

end;
display(minute);
end;
end;

The section of program:
if runwayclear then
begin
end,
only operates if the runway is clear for an airctafland.

The next section only operates if the queue isnagity:

if front<>back then

begin

end,;
(Remember that the front and back pointers aréensame position for an
empty queue.)

A boolean variable is used to record that the &frdands:
planelanded:=true;

383

We calculate the waiting time for the plane whiels just landed:
waittime:=minute-queue[front];

then remove the aircraft from the queue by movirggftont pointer forward
by one place. The pointer is reset to positioff il passes the end of the
array:

front:=front+1;

if front>100 then

front:=1,

Add the booleann variablplanelanded to thePublic declarations section:
{ Public declarations }

runwayclear, planelanded :boolean;

The work on the queue is now completed, but we neeald some more
lines of program to thelisplay' procedure to show what is happening during
the simulation. Insert the section shown below:

procedure TForml.display(minute:integer);
var
textline:string;
i,last:integer;
begin
textline:='"Minute '+inttostr(minute);
listbox1.items.add(textline);
textline:="Aircraft arriving: '+
inttostr(arrive[minute]);
listbox1.items.add(textline);
if runwayclear then

begin
listbox1.items.add('Runway clear for landing’);
if planelanded=false then
listbox1.items.add
('No aircraft waiting to land’)
else
begin
textline:="An aircraft lands: waiting time *;
textline:=textline+
inttostr(waittime)+' minutes';
listbox1.items.add(textline);
end;
end
else
listbox1.items.add('Runway not available');
listbox1.items.add(");
end,

384

Compile and run the program.

For each minute of the simulation the program ghal$play one of the
three messages:
* runway not available
* runway available but no aircraft waiting to land
* runway available and an aircraft lands - the waitime will be
given

Minute 1 =l
Aircraft arriving: 2
Runway not available b

Minute 2 Aircraft arriving
Aircraft arriving: 0

Runway clear for landing per hour

An aircraft lands: waiting time 1 minutes

Minute 3
Aircraft arriving: 0

Runway not available o

Minute 4

Aircraft arriving: 1

Runway clear for landing

An aircraft lands: waiting time 3 minutes

Landing probability

: - run simulation |
Minute 5
Aircraft arriving: 1

Runway not available

The final stage of the program is to record anglaysthe maximum waiting
time of any aircraft during the simulation periodReturn to the Delphi
editing screen and bring tk&®rml window to the front. Add af&dit Box
andLabelswith the captiondVMlaximum waiting time' and mins'.

385

Add the following lines to theun simulation' button click procedure:

procedure TForm1.Button1Click(Sender: TObject);
var
n,i,minute:integer;
maxwait:integer;
begin
arrivals;
listbox1.clear;
maxwait:=0;
front:=1,;
back:=1;
for minute:=1 to 180 do
begin
if runwayclear then
begin
if front<>back then
begin
waittime:=minute-queue[front];
If waittime>maxwait then
maxwait:=waittime;
display(minute);
end;
edit3.text:=inttostr(maxwait);
end,

Compile and run the simulation. The maximum wgitiime should be
displayed:

386

Minute 1 -
Aircraft arriving: 0
Runway not available

Minute 2 Aircraft arriving
Aircraft arriving: 0

Runway clear for landing per hour
No aircraft waiting to land

Minute 3 . -
Aircraft arriving: 0 Landing probability
Runway clear for landing

No aircraft waiting to land &
Minute 4

Aircraft arriving: 0 { run simulation |

Runway clear for landing
No aircraft waiting to land

Minute 5 . o .
pircraft arriving: 0 Maximum waiting time EI mins

Runway clear for landing -

Use your program to answer the questions we wetedaby the airport
planners:

At present the airport has a single runway andahéing probability
is 50%. If a second runway is built, it is expected ttia landing
probability will increase t@0%. The air traffic control authority has
specified that the time any aircraft has to waitland must not
exceed 30 minutes.

* What is the maximum number of aircraft which caa tige airport
per hour with the current single runway?

» How many aircraft per hour could be handled ifsbeond runway
is built?

387

