
 71

SIX

Saving data on disc

It is often important for computer programs to save data on disc so that the
information will not be lost when the machine is switched off. Data on disc
can be kept as a permanent record, and reloaded at a future date when
needed. As an example we will produce a program to save information
about an employee of a company:

 Name: Dafydd Jones

 Department: Engineering

 Age: 23

 Salary: 12500

The entire set of information relating to the employee (name, department,
age and salary) is called a 'record', whilst an individual data item (e.g. salary)
is called a 'field'.

Make a new sub-directory STAFF in your work area. Open a Delphi project
and save this into the sub-directory. Use the Object Inspector to maximize
the form, and drag the grid to nearly fill the screen.

Place edit boxes and labels
on the form to represent the
fields of the record. Also add
three buttons and give these
captions: 'save on disc', 'clear'
and 'reload from disc':

The next step is to tell the

field

record

 72

computer what fields are to be included in the record which will be stored on
disc. This is done beneath the public declarations section. Add the lines:

 public
 { Public declarations }
 end;

 person=record
 name:string[40];
 department:string[20];
 age:string[3];
 salary:string[8];
 end;

var
 Form1: TForm1;
 personrecord:person;

We have first defined the fields of the record, giving the maximum number of
characters which can be typed in - for example, we are allowing the name
field to contain up to 40 characters. We then give a variable name
'personrecord' which will be used in the program to refer to the record as
data is being entered or stored.

The purpose of the 'clear' button is to blank out the four edit boxes. Double-
click this button to create an event handler and add the program lines:

procedure TForm1.Button2Click(Sender: TObject);
begin
 edit1.text:='';
 edit2.text:='';
 edit3.text:='';
 edit4.text:='';
end;

Compile and run the program to check that text can be entered and cleared
from the edit boxes.

 73

The next step is to save the record on disc. Produce an event handler
procedure for the 'save on disc' button and add the lines shown below:

procedure TForm1.Button1Click(Sender: TObject);
var
 personfile:file of person;
begin
 personrecord.name:=edit1.text;
 personrecord.department:=edit2.text;
 personrecord.age:=edit3.text;
 personrecord.salary:=edit4.text;
 assignfile(personfile,'staff.dat');
 rewrite(personfile);
 write(personfile,personrecord);
 closefile(personfile);
end;

There is a lot happening here! The lines of program carry out the following
tasks:

 personfile:file of person;
warns the computer that records are to be stored in a file. We will refer to
this as 'personfile'.

 personrecord.name:=edit1.text;
 personrecord.department:=edit2.text;
 personrecord.age:=edit3.text;
 personrecord.salary:=edit4.text;
is a set of lines which copy the entries from the four edit boxes into the fields
of the record.

 assignfile(personfile,'staff.dat');
gives our file of records the name 'staff.dat' when it is saved on the disc -
this is the name which will appear when you list the files in your work
directory.

 rewrite(personfile);
creates a new file on the disc ready to receive the data.

 write(personfile,personrecord);
stores the record in the empty disc file.

 closefile(personfile);
closes the file so that the record we have saved is safe.

 74

Compile and run the program. Enter the test data for Dafydd Jones. Click
the 'save on disc' button, then exit from the program and return to the Delphi
editing screen.

To check whether the data has been saved, use the Windows START button
in the bottom left hand corner of the screen to load the NOTEPAD utility
program. Use the FILE / OPEN option and locate your sub-directory
STAFF. Give the file name:
 staff.dat
and the saved text should appear:

We can now return to Delphi and set up a procedure to reload the record
from disc.

Double-click the 'reload from disc' button to create an event handler and add
the lines:

procedure TForm1.Button3Click(Sender: TObject);
var
 personfile:file of person;
begin
 assignfile(personfile,'staff.dat');
 reset(personfile);
 read(personfile,personrecord);
 closefile(personfile);
 edit1.text:=personrecord.name;
 edit2.text:=personrecord.department;
 edit3.text:=personrecord.age;
 edit4.text:=personrecord.salary;
end;

This is the exact opposite of the saving procedure which you wrote earlier.

 read(personfile,personrecord);
loads in the record from the disc.

 edit1.text:=personrecord.name;
displays the entry for the name field in edit box 1.

 75

Compile and run the program, but this time don't enter the test data from the
keyboard. Instead, press the 'load from disc' button and the information you
stored earlier should be displayed in the edit boxes.

Saving a series of records in a file

In the previous section we successfuly saved and reloaded a single record.
In a real system, however, the file is likely to contain many records - one for
each employee of the company. We will see how a series of records are
stored in our next project:

An airport requires a computer program to store information
about the destination, departure time and airline for each flight
scheduled. The program should let the user:
• set up a new file to hold the records
• add new records to the file
• view the records.

This is quite a complex task, so the first step should be to draw a
schematic diagram to clarify exactly what input, processing and output
operations will be needed. This is done for you on the next page.

We might now draw a top-down structure diagram to simplify the project
into a series of modules:

 unit1 unit2 unit3
 form1 form2 form3

We can arrange for Unit 1 to operate the menu system and setting up of a
new file, Unit 2 can deal with adding records, and Unit 3 can handle viewing
of records in the file. In this way, the overall problem will be divided into
simpler modules which will be easier to program with less risk of errors.

PROGRAM SCHEMATIC

Airport flight information

Set up new file Add record View records Menu choice

 76

new file
option

processing

file set up on
disc

output

menu system

processing

save record on
disc

output

load records
from disc

input

display option

processing

add record
option

processing

selection from
menu

input

type in flight
information

input

display records
on screen

output

 77

Set up a new sub-directory AIRPORT in your work area. Open a Delphi
project and save it into the sub-directory. Use the Object Inspector to
maximize form1, and drag the grid to nearly fill the screen.

Add four buttons for the program options 'new file', 'add record', 'display
records', and 'end program':

Create an event handler for the 'end program' button:

procedure TForm1.Button4Click(Sender: TObject);
begin
 halt;
end;

We can now start work on the 'new file' option which will also be carried out
by Form1. Select the 'panel' component from the STANDARD menu:

Drag with the mouse to place a panel on the grid. Press ENTER to bring
up the Object Inspector and blank out the 'Caption' property.

Panel

 78

Add two buttons to the panel as shown above, and give these the
captions 'continue' and 'cancel'. Also add a label with the warning
message:
 confirm to open a new file: existing records will be lost

The panel component provides a convenient way of turning on or off a
group of buttons or labels. When the panel is closed, all the components
on it will also disappear.

Click on the panel and press ENTER to bring up the Object Inspector.
Set the 'Visible' property to 'False'. Double-click the 'new file' button at
the top of the form to create an event handler and add the line:

procedure TForm1.Button1Click(Sender: TObject);
begin
 panel1.visible:=true;
end;

Now double-click the 'cancel' button of the panel and add the event
handler line:

procedure TForm1.Button6Click(Sender: TObject);
begin
 panel1.visible:=false;
end;

Compile and run the program. It should be possible to make the panel
and its buttons appear by clicking the 'new file' button, and disappear by
clicking 'cancel'. Use the 'end program' button to return to the Delphi
editing screen.

Next we will produce the event handler for the 'continue' button. This is
to create the new empty file ready for records to be saved on disc. Add
the lines of program:

procedure TForm1.Button5Click(Sender: TObject);
var
 flightfile:file of flight;
begin
 assignfile(flightfile,'flights.dat');
 rewrite(flightfile);
 closefile(flightfile);
 panel1.visible:=false;
end;

The procedure will set up an empty file in your AIRPORT sub-directory
called 'flights.dat'.

 79

It is necessary to add details of the fields to be included in a flight
record. Do this below the 'public declarations' section:

public
 { Public declarations }
 end;

 flight=record
 destination:string[30];
 departtime:string[10];
 airline:string[20];
 end;

Compile and run the program. Select 'new file' and press the 'continue'
button on the panel, then exit from the program. Use the Windows
Explorer utility to check that a file 'flights.dat' has been created - its size
should be shown as 0KB.

We can now add the forms for the other modules of the program. Click
the 'new form' short cut button and select 'blank form'. A new window
for Form2 should appear. Repeat this to create another window for
Form3. Use the 'save project' button to save the new units into your
AIRPORT sub-directory.

Bring the Form1 grid to the front and create an event handler for the
'add record' button':

procedure TForm1.Button2Click(Sender: TObject);
begin
 form2.visible:=true;
end;

Create a similar event handler for the 'display records' button:

procedure TForm1.Button3Click(Sender: TObject);
begin
 form3.visible:=true;
end;

Add the new units to the 'uses' list near the top of the program:

uses
 SysUtils,WinTypes,WinProcs,Messages,Classes,Graph ics,
Controls,Forms,Dialogs,StdCtrls,ExtCtrls, unit2,unit3 ;

Use the project manager to select the Form2 grid. Press ENTER to
bring up the Object Inspector and set the FormStyle property to
'StayOnTop'. Set the BorderStyle property to 'Dialog'.

 80

Repeat this for the Form3 window, setting the FormStyle to
'StayOnTop' and the BorderStyle to 'Dialog'.

Return to the Form2 grid and add labels and edit boxes for inputting
destination, depart time and airline as shown below. Use a label for the
heading 'Add a record'. Complete the form with two buttons captioned
'add' and 'cancel'.

Create an event handler for the 'cancel' button:

procedure TForm2.Button2Click(Sender: TObject);
begin
 form2.visible:=false;
end;

Compile the project using the 'Build All' option and run the program.
Check that the 'add record' button will open the Form2 window, and
that this can be closed by the 'cancel' button. Return to the Delphi
editing screen.

The next step is to set up an event handler for the 'add' button. Double-
click to create the procedure then insert the lines of program shown
below:

 81

procedure TForm2.Button1Click(Sender: TObject);
var
 flightrecord:flight;
 flightfile:file of flight;
begin
 flightrecord.destination:=edit1.text;
 flightrecord.departtime:=edit2.text;
 flightrecord.airline:=edit3.text;
 assignfile(flightfile,'flights.dat');
 reset(flightfile);
 seek(flightfile,filesize(flightfile));
 write(flightfile,flightrecord);
 closefile(flightfile);
 form2.visible:=false;
end;

Notice that we begin by telling the computer that we will be using a
flightrecord in the procedure, and want this to be stored in a flightfile:

var
 flightrecord:flight;
 flightfile:file of flight;

The next lines:
flightrecord.destination:=edit1.text;
flightrecord.departtime:=edit2.text;
flightrecord.airline:=edit3.text;

transfer the information from the edit boxes to the fields of the
flightrecord. We then open the flightfile with:

assignfile(flightfile,'flights.dat');
reset(flightfile);

The line:
 seek(flightfile,filesize(flightfile));
moves to the end of the file where the new record will be added - we
will discuss how the SEEK command works in more detail later in the
course.

The final group of lines:

write(flightfile,flightrecord);
closefile(flightfile);

 form2.visible:=false;
add the flightrecord to the file, close the file, then close the 'add record'
window.

 82

Below the 'public declarations' section, give the program the necessary
information about the fields in a flight record:

 public
 { Public declarations }
 end;

 flight=record
 destination:string[30];
 departtime:string[10];
 airline:string[20];
 end;

We can now test the input procedure. Compile the program with the
'Build All' option, then Run. First press the 'new file' button and
confirm to create a new file. Go next to the 'add record' screen and type
information about a flight:

Save the record by pressing 'add', then exit from the program. Use the
NOTEPAD utility to check that a file 'flights.dat' has been created and
contains the record you entered (don't worry if there are other random
characters present in the file as well as your data - these will be ignored
when the record is reloaded by the program).

 83

The next step is to set up edit boxes on Form3 to display the records
when they are reloaded from disc. Add captions and a button labelled
'next':

Click on the form grid then press ENTER to bring up the Object
Inspector. Click the 'Events' tab at the bottom of the window, then
double-click the right hand column alongside 'OnActivate' - this will
create an event handler procedure which will run immediately the
'Display records' window is opened. Add the lines of program:

procedure TForm3.FormActivate(Sender: TObject);
begin
 assignfile(flightfile,'flights.dat');
 reset(flightfile);
 if not eof(flightfile) then
 begin
 read(flightfile,flightrecord);
 edit1.text:=flightrecord.destination;
 edit2.text:=flightrecord.departtime;
 edit3.text:=flightrecord.airline;
 end;
end;

The procedure begins by opening the flightfile with the commands:

assignfile(flightfile,'flights.dat');
reset(flightfile);

 84

The line:

 if not eof(flightfile) . . .
checks to see whether there are any records in the file. The letters 'eof'
stand for 'end of file'. If the end of the file has not been reached then the
computer will load a record:

read(flightfile,flightrecord);

The data is then transferred to the edit boxes and displayed:
edit1.text:=flightrecord.destination;
edit2.text:=flightrecord.departtime;
edit3.text:=flightrecord.airline;

Add the field information for a flight record below the 'public
declarations' section, as you did with Form2. Flightrecord and
flightfile are also added at this point:

 { Public declarations }
 end;

 flight=record
 destination:string[30];
 departtime:string[10];
 airline:string[20];
 end;

var
 Form3: TForm3;
 flightrecord:flight;
 flightfile:file of flight;

We can finish off Form3 by adding an event handler for the 'next'
button:

procedure TForm3.Button1Click(Sender: TObject);
begin
 if not eof(flightfile) then
 begin
 read(flightfile,flightrecord);
 edit1.text:=flightrecord.destination;
 edit2.text:=flightrecord.departtime;
 edit3.text:=flightrecord.airline;
 end
 else
 begin
 closefile(flightfile);
 form3.visible:=false;
 end;
end;

 85

This procedure will begin by checking whether the end of the file has
been reached yet. If not, then a flight record will be loaded and
displayed in the edit boxes.

If it is found that there are no more records to display, flightfile will be
closed and the 'Display records' window will close down.

Compile the program using 'Build All' then Run. Go directly to the
'display records' option and the details of the Paris flight which you
entered earlier should be displayed. Pressing 'next' will close the display
window.

Press 'add record' and enter details of another flight. Choose 'display
records' again and the program should show the two records now in the
file:

Further records can be added, but you will find that it is necessary to
delete the previous entries from the edit boxes in the 'Add record'
window each time. To avoid this we will add a procedure to blank out
the form automatically.

Exit from the program and return to the Delphi editing screen. Use the
Project Manager to bring Form2 to the front. Click on the grid and press

 86

ENTER to bring up the Object Inspector. Click the 'Events' tab at the
bottom, then double-click alongside 'On Activate'. Add lines of
program to the event handler which appears:

procedure TForm2.FormActivate(Sender: TObject);
begin
 edit1.text:='';
 edit2.text:='';
 edit3.text:='';
end;

Build and Run the program. Add several more flight records and check
that they are saved and reloaded correctly.

This completes the introduction to saving data on disc. In a later section
of the course you will be setting up a more complete database program
which will allow existing records to be edited and deleted.

SUMMARY

In this chapter you have:
• set up record structures containing a number of data fields
• used 'assignfile' to specify the name of a data file on disc
• used 'rewrite' to create a new empty file
• used 'reset' to open an existing file
• used 'write' to save a record into a file
• used 'read' to load a record from a file
• used the 'seek' command to add records to the end of an existing file
• used 'closefile' to close a file so that data is secure
• transferred data between the fields of a record and edit boxes on

screen
• used the 'panel' component to show and hide groups of buttons and

labels

