
 328

SIXTEEN

Selecting files and printing data

So far during the course we have produced several programs which saved

data records on disc, but in each case we specified the file name to be used.

For example, the Estate Agent's database program always saved house

records in a file called 'houses.dat'. Generally, however, it is better if the

user can choose their own file name when saving data. Consider the

following situation:

A supermarket chain has branches in a number of towns in North

Wales. Each day the total sales are recorded in a computer file, and

at the end of the week each branch sends the file to head office. The

company devises a naming system for the files which combines code

letters for the branch and a number for the week. For example, the

file:

 PORT24.DAT

contains the sales figures for the Porthmadog branch in week 24 of

the year.

To implement this system we would need a way for the store employees to

enter the appropriate file name when storing their data. We will write the

program to see how this is done:

Set up a new directory SALES and save a Delphi project into it. Use the

Object Inspector to Maximize the Form, and drag the grid to nearly fill the

screen. Place a MainMenu component on the Form. Double-click the icon

to bring up the Menu Editor, and put the captions 'save data', 'load data'

and 'end program' on the top line of the screen:

 329

Add two Edit Boxes to the Form, and place the Labels 'Branch' and 'Week

ending' alongside:

Put a String Grid in the centre of the form, and use the Object Inspector to

set the properties:

 DefaultColWidth 120

 ColCount 2

 RowCount 8

 Options:

 goEditing True

 ScrollBars none

Go to the menu line at the top of the Form, and double-click the 'end

program' option to produce an event handler. Add a halt command:

procedure TForm1.endprogram1Click(Sender: TObject);

begin

 halt;

end;

Compile and run the program to check that the components are displayed

correctly, then click 'end program' to return to the Delphi editing screen.

Double-click the dotted grid of the Form to produce an 'OnCreate'

procedure. Add lines of program to write captions for the string grid:

 330

procedure TForm1.FormCreate(Sender: TObject);

begin

 with stringgrid1 do

 begin

 cells[1,0]:='sales £';

 cells[0,1]:='Monday';

 cells[0,2]:='Tuesday';

 cells[0,3]:='Wednesday';

 cells[0,4]:='Thursday';

 cells[0,5]:='Friday';

 cells[0,6]:='Saturday';

 cells[0,7]:='Sunday';

 end;

end;

We need to set up a record structure for storing the sales data on disc. Insert

this near the top of the program below the 'type' heading:

type

 sales=record

 branch,week:string[24];

 daytotal:array[1..7] of real;

 end;

 TForm1 = class(TForm)

The name of the branch and the date will be stored as strings of text; the

figure 24 in square brackets allows each entry to be up to 24 characters in

length. The daily sales figures will be stored as an array of seven decimal

numbers to allow for pounds and pence.

Go to the Public declarations section and add the variable names for the file

and records:

 public
 { Public declarations }

 salesrecord:sales;

 salesfile:file of sales;

 end;

We now need a procedure to transfer the sales figures into the array. Click

on the String Grid and press ENTER to bring up the Object Inspector. Click

the Events tab, then double-click alongside 'OnKeyUp' to produce an event

handler. Add the lines:

 331

procedure TForm1.StringGrid1KeyUp(Sender: TObject;

 var Key: Word;Shift:TShiftState);

var

 y:integer;

begin

 y:=stringgrid1.row;

 if stringgrid1.cells[1,y]='' then

 salesrecord.daytotal[y]:=0

 else

 salesrecord.daytotal[y]:=

 strtofloat(stringgrid1.cells[1,y]);

end;

Compile and run the program. Headings should now be displayed in the

String Grid:

Check that the String Grid is error trapped to accept decimal numbers, then

return to the Delphi editing screen.

We can now begin work on the 'save data' option. Go to the DIALOGS menu

and select the Save Dialog component:

SaveDialog

 332

Place a SaveDialog component on the Form. As in the case of the Main Menu,

this appears as a fixed sized icon which can be positioned anywhere convenient

on the grid.

Go to the menu line at the top of the Form and double-click the 'save data'

option to produce an event handler. Add the instuction:

procedure TForm1.savedata1Click(Sender: TObject);

begin

 savedialog1.execute;

end;

Compile and run the program. Click the 'save data' menu option and a file

selection window will open - this is probably familiar to you from other

Windows applications:

 333

It is possible to change the dirve or directory, but no file names are being

displayed yet. It is necessary to set up a filter to show files in the display

window - we will do that next...

Click the 'Cancel' button, then select 'end program' to return to the Delphi

editing screen.

Go to the Form grid, click on the SaveDialog icon and press ENTER to bring

up the Object Inspector. Double-click alongside the Filter property and the

'Filter Editor' wiondow will open:

Add the entries:

 Filter name Filter

 data files (*.dat) *.dat

 all files (*.*) *.*

then click the 'OK' button.

Set the property:

 DefaultExt DAT

This ensures that if the user enters a file name without a three-letter extension,

the computer will automatically add the letters 'DAT'. For example: 'PORT24'

would become 'PORT24.DAT'.

 334

Compile and run the program. Click the 'Save data' option and check that it is

now possible to list just the .DAT files or all the files in a particular directory:

Click 'cancel' to close the file window, then 'end program' to return to the

Delphi editing screen.

We can now set up the program to save the sales data onto disc. Go to the Form

grid and click the 'save data' menu option to open the event handler. Add the

lines:

procedure TForm1.savedata1Click(Sender: TObject);

begin

 if savedialog1.execute then

 begin

 salesrecord.branch:=edit1.text;

 salesrecord.week:=edit2.text;

 assignfile(salesfile,savedialog1.filename);

 rewrite(salesfile);

 write(salesfile,salesrecord);

 closefile(salesfile);

 end;

end;

The conditional block:

if savedialog1.execute then

begin

end;

will only operate if the user enters a valid filename.

The lines:

 salesrecord.branch:=edit1.text;

 salesrecord.week:=edit2.text;

transfer the 'Branch' and 'Week beginning' entries from the edit boxes into the

fields of the data record.

 335

We then open a new file using the filename entered by the user:

 assignfile(salesfile,savedialog1.filename);

 rewrite(salesfile);

The sales record is written into the file, then the file is closed:

 write(salesfile,salesrecord);

 closefile(salesfile);

Compile and run the program. Enter a set of sales data, as shown on the next

page, then click the 'save data' option. When the 'Save As' window appears,

select a suitable directory and give the file name:

 HAR30

without a .DAT extension. Click 'OK', then exit to the Delphi editing screen.

Use the NOTEPAD utility to check that a file has been saved with the full name

 HAR30.DAT

and that this shows the name of the branch and date. There will also be some

random characters present which represent the numerical data for the sales.

 336

We can now work on the menu option to reload the sales data. Begin by adding

an 'Open Dialog' component to the form:

Click the OpenDialog icon and press ENTER to bring up the Object Inspector.

Double-click alongside the 'Filter' property, and make the same entries as you

did earlier for the SaveDialog component:

:

 Filter name Filter

 data files (*.dat) *.dat

 all files (*.*) *.*

Go back to the Form grid and click the 'load data' menu option to produce

an event handler. Add the lines:

procedure TForm1.loaddata1Click(Sender: TObject);

var

 i:integer;

begin

 if opendialog1.execute then

 begin

 assignfile(salesfile,opendialog1.filename);

 reset(salesfile);

 read(salesfile,salesrecord);

 closefile(salesfile);

 edit1.text:=salesrecord.branch;

 edit2.text:=salesrecord.week;

 for i:=1 to 7 do

 stringgrid1.cells[1,i]:=floattostrf

 (salesrecord.daytotal[i],ffFixed,8,2);

 end;

end;

This procedure is very similar to the one for saving data. We begin by

loading the file selected by the user. Data is then transferred from the fields

Open Dialog icon

 337

of the record into the Edit Boxes and String Grid. The sales values need to

be converted from decimal numbers into text strings so that they can be

displayed.

Compile and run the program. Click the 'load data' menu option and a file

window should appear. Select the file HAR30 and click 'OK'. The data

saved earlier should now appear on the Form.

Check that it is possible to alter and resave the data using a different file

name, then reload either the original or the updated file from disc. Exit to

the Delphi editing screen.

A further feature we can add to the program is to print out the sales data on

paper.

Double-click the MainMenu icon on the Form grid to bring up the Menu

Editor window:

Click 'end program' so that it is highlighted, then press the INSERT key.

An empty box should appear between the 'load data' and 'end program'

options. Enter the caption 'print' as shown below:

Return to the Form1 grid. Go to the DIALOGS component menu and select

Print Dialog. Place the Print Dialog icon on the Form grid:

PrintDialog

 338

Click on the 'print' menu option at the top of the Form to produce an event

handler. Add the line:

procedure TForm1.print1Click(Sender: TObject);

begin

 printdialog1.execute;

end;

Compile and run the program. Check that the saved data can still be

reloaded, then click the 'print' option. A print dialog window will open, as

shown on the next page. This allows you to set the number of copies

required. There is also a button to open a setup window in which the

orientation of the paper (portrait or landscape format) can be chosen.

We have not yet written the program lines to produce a printout. Choose

'cancel' and 'end program' to return to the Delphi editing screen.

Click the 'print' option to display the event handler, then add the lines

below.

NOTE: In places it is necessary to include blank spaces so that the text will

be neatly layed out on the paper. Important spaces will be shown by shading

and a number, e.g.:

 ••••

 339

indicates a point where four blank spaces are typed with the space bar.

procedure TForm1.print1Click(Sender: TObject);

var

 printfile: textfile;

begin

 if printdialog1.execute then

 begin

 assignprn(printfile);

 rewrite(printfile);

 printer.canvas.font.name:='Courier New';

 printer.canvas.font.size:=12;

 writeln(printfile,'••••Branch:•'

 +edit1.text);

 writeln(printfile,'••••Week beginning:•'

 + edit2.text);

 closefile(printfile);

 end;

end;

Printing data from a Delphi program is similar to saving data on disc - you send

a 'file' to the printer in a similar way to sending a file to the disc drive.

The first lines:

var

 printfile: textfile;

set up a file variable. We have called this 'printfile', but any name could be

used.

The conditional block:

 if printdialog1.execute then

 begin

 end;

will not operate if the user clicks the 'cancel' button in the print dialog window.

We open the file to write data to the printer:

 assignprn(printfile);

 rewrite(printfile);

The type face and size for the printout can be chosen. 'Courier New' is a non-

proportional spaced font in which every letter is the same width - this is good

for keeping tables of data correctly aligned in columns:

 printer.canvas.font.name:='Courier New';

 printer.canvas.font.size:=12;

We then output the name of the branch and the date to the printer:

 340

 writeln(printfile,'••••Branch:•'+edit1.text);

 writeln(printfile,'••••Week beginning:•'+ edit2.text);

Four blank spaces have been included at the start of each line so that the text is

not printed right at the left hand edge of the paper.

The print file is closed when the printing is completed:

 closefile(printfile);

Go to the 'uses' line at the top of Unit1 and add 'printers' to the list:

uses

 SysUtils, WinTypes, Menus, printers;

Compile and run the program. Load the test data from disc then select the print

option. Click 'OK' to print. A printout should be produced showing the branch

and date:

Branch: Harlech

Week beginning: 10 August

Click 'end program' to return to the Delphi editing screen, then click the 'print'

option to open the event handler. Add lines of program to print the table of

sales figures:

procedure TForm1.print1Click(Sender: TObject);

var

 printfile: textfile;

 textline,item:string;

 i:integer;

begin

 if printdialog1.execute then

 begin

 assignprn(printfile);

 rewrite(printfile);

 printer.canvas.font.name:='Courier New';

 printer.canvas.font.size:=12;

 writeln(printfile,'••••Branch:•'+edit1.text);

 writeln(printfile,

 341

 '••••Week beginning:•'+ edit2.text);

 writeln(printfile);

 writeln(printfile,

 '••••Day••••••••••••sales (£)');

 for i:=1 to 7 do

 begin

 textline:='••••'+stringgrid1.cells[0,i];

 item:='••••••••'+stringgrid1.cells[1,i];

 textline:=textline+item;

 writeln(printfile,textline);

 end;

 closefile(printfile);

 end;

end;

The command:

 writeln(printfile);

simply misses a blank line on the printout.

Column headings are printed with:

 writeln(printfile,' Day sales (£)');

A loop then begins for printing the seven days' sales data:

 for i:=1 to 7 do

We begin to build up a line of text by adding the name of each day from

column 0 of the string grid:

textline:='••••'+stringgrid1.cells[0,i];

Spaces are included to separate the columns, then the sales figure from column 1 of the

string grid is added:

 item:='••••••••'+stringgrid1.cells[1,i];

 textline:=textline+item;

The completed line of text is sent to the printer:

 writeln(printfile,textline);

 342

Compile and run the program. Load the test data from disc and select the print

option. Click 'OK' and the table of data should be printed:

Branch: Harlech

Week beginning: 10 August

Day sales (£)

Monday 685.20

Tuesday 750.40

Wednesday 425.67

Thursday 728.92

Friday 642.10

Saturday 1136.90

Sunday 348.27

The data is all present, but unfortunately it is not aligned neatly in columns yet.

There is a problem because the day names have different lengths, and the sales

figures contain different numbers of digits. Return to the Delphi editing screen

and click 'print' to bring back the event handler procedure. Make the following

alterations to the program:

 writeln(printfile,'••••Day••••••••••••sales (£)');

 for i:=1 to 7 do

 begin

 item:='••••'+stringgrid1.cells[0,i]+

 '••••••••';

 textline:=copy(item,1,16);

 item:='••••••••'+stringgrid1.cells[1,i];

 item:=copy(item,length(item)-10,11);

 textline:=textline+item;

 writeln(printfile, textline);

 end;

This new section of program makes use of the COPYcommand. This takes

a piece of text and copies a specified number of characters into a string

variable. COPY has three parameters:

 copy (string, starting position, number of characters to be copied)

For example:

 item:= copy ('Newcastle United', 4, 6) ;

 343

would begin at the fourth character of 'Newcastle United' and copy six

characters into the string variable called 'item':

 item =

Let's see how the COPY command is used to format the columns of the

printout:

We begin by adding some blank spaces to the end of each day name:

 item:='••••' + stringgrid1.cells[0,i]+'••••••••';

We then use the 'copy' command to begin at character 1 and copy just the

first 16 characters into the variable 'textline':

 textline:=copy(item,1,16);

In this way, each day name will be followed by sufficient spaces to make the

length exactly 16 characters:

We use a similar technique to make the sales figures into equal length strings.

This time, however, we need to 'right align' the figures. Space is added before

the numbers, then we copy just the last 11 characters:

 item:='••••••••'+stringgrid1.cells[1,i];

 item:=copy(item,length(item)-10,11);

 M o n d a y

 T u e s d a y

 S u n d a y

1 16

count back 10 characters

 from the end of the string
copy the 11 characters from

here to the end of the string

 N e w c a s t l e U n i t e d

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

c a s t l e

extra

spaces

not copied

 344

These equal length strings can now be neatly aligned when the column of data is

printed.

Compile and run the program. Load the test data from disc and select the print

option. Click 'OK' and the full table of data should be printed with correct

alignment:

Branch: Harlech

Week beginning: 10 August

Day sales (£)

Monday 685.20

Tuesday 750.40

Wednesday 425.67

Thursday 728.92

Friday 642.10

Saturday 1136.90

Sunday 348.27

For our next program we will make use of the techniques for saving files and

printing data, but in a situation requiring more complex processing of

information:

Coach tour bookings

A tour operator in Barmouth is organising

three coach trips each day (Monday - Sunday) during particular weeks in

the summer. The trips advertised are:

 Circular tour of Snowdonia

 Visit to the Ffestiniog Railway

 Day out in Aberystwyth

 1 1 3 6 . 9 0

0000

 3 4 8 . 2 7

u e s d a y

length(item)-10 length(item)

 345

The tour operator has three drivers available each day, along with three

vehicles:

a 15 seat minibus

a small 30 seat coach

a large 50 seat coach

Your task is to design a computer program to handle bookings and

enquiries for the tours. A program is required which can:

(i) Record the current number of passengers for tours to Snowdonia, the

Ffestiniog Railway, and Aberystwyth on each of the days Monday to

Sunday.

(ii) Allow new bookings to be entered for any day. If the required

number of seats are still available, the computer will make the booking,

otherwise a suitable message is displayed.

The program should be able to save data on disc and print out the current

numbers of passengers booked.

IMPORTANT!

The program must take into account the limited number of seats on the

smaller vehicles. If 31 passengers are going to Aberystwyth, the large

coach will be needed, so no more than 30 passengers can go to either of

the other destinations.

To begin the program, set up a new directory COACHES and save a Delphi

project into it. Use the Object Inspector to Maximize the Form, and drag the

grid to nearly fill the screen.

 346

Place a string grid on the form.

 Use the Object Inspector to set the properties for the string grid:

 DefaultColWidth 180

 ColCount 4

 RowCount 8

 ScrollBars none

Add a Main Menu component to the grid, and double-click the icon to

bring up the Menu Editor window. As for the supermarket sales program

we have just completed, add options along the top line of the Form: 'save

data', 'load data', 'print', and 'end program'.

Close the Menu Editor window and return to the Form1 grid. Click the 'end

program' option to produce an event handler and add the line:

procedure TForm1.endprogram1Click(Sender: TObject);

begin

 halt;

end;

Put an Edit Box on the Form1 grid above the String grid. Place a Label

alongside with the caption 'Week beginning':

Compile and run the program to check that the components are displayed

correctly, then click the 'end program' option to return to the Delphi editing

screen.

The program will need a record structure in which to store the date and the

numbers of passengers booked on each coach trip. Insert this below the 'type'

heading:

type

 coach=record

 date:string[24];

 booking:array[1..7,1..3] of integer;

 end;

 347

Go to the Public declarations section and add variable names for the record

and file:
 public

 { Public declarations }

 coachrecord:coach;

 coachfile:file of coach;

 end;

Bring the Form1 window to the front and double-click on the grid to

produce an 'On create' event handler. Add the lines of program:

procedure TForm1.FormCreate(Sender: TObject);

var

 i,j:integer;

begin

 with stringgrid1 do

 begin

 cells[0,1]:='Monday';

 cells[0,2]:='Tuesday';

 cells[0,3]:='Wednesday';

 cells[0,4]:='Thursday';

 cells[0,5]:='Friday';

 cells[0,6]:='Saturday';

 cells[0,7]:='Sunday';

 cells[1,0]:='Snowdonia';

 cells[2,0]:='Ffestiniog Railway';

 cells[3,0]:='Aberystwyth';

 end;

 for i:=1 to 7 do

 begin

 for j:=1 to 3 do

 begin

 coachrecord.booking[i,j]:=0;

 stringgrid1.cells[j,i]:=inttostr(0);

 end;

 end;

end;

The first group of lines:

 with stringgrid1 do

 begin

 cells[0,1]:='Monday';

 cells[3,0]:='Aberystwyth';

 348

will write captions on the String Grid for the days of the week and the three

destinations of the coach trips.

The next set of lines use two loops to initialise the bookings for each trip to zero

on each of the days. We also initialise the String Grid with zero values in each

cell:

 for i:=1 to 7 do

 begin

 for j:=1 to 3 do

 begin

 coachrecord.booking[i,j]:=0;

 stringgrid1.cells[j,i]:=inttostr(0);

 end;

 end;

The booking field of coachrecord is a two dimensional array. The first

index value represents the number of the day, whilst the second index

represents the number of the trip, e.g.:

 coachrecord.booking[1,3] = 0

Compile and run the program. Check that captions are displayed on the

String Grid correctly and that all the coach bookings are shown as zero,

then return to the Delphi editing screen.

repeat for each day

repeat for each trip

day 1

Monday trip 3

Aberystwyth

no bookings

for this trip

yet

 349

A separate window can be used to enter the bookings, in a similar way to the

railway ticket program in chapter 5. Use the New form short-cut button to

create a blank form.

Use the Object Inspector to set the properties for Form2:

BorderStyle Dialog

FormStyle StayOnTop

 Visible True

Place an Edit Box on Form2, and a Label alongside with the caption

'Number of seats required:'. Add three Buttons with the captions 'check

availability', 'book' and 'cancel'.

Set up two Radio Groups to display buttons for the days of the week, and

the trip destinations 'Snowdonia', 'Ffestiniog Railway' and 'Aberystwyth'.

Complete the Form with a small Image Box in the bottom right hand corner.

Load the picture file YES2.BMP which is provided. Set the Visible

property the False for the Image Box. Also set Visible to False for the

'book' and 'cancel' Buttons.

Before testing the program we need to link the two forms. Do this by

adding a 'uses' instruction below the 'implementation' heading in Unit2:

implementation

{$R *.DFM}

uses

 unit1;

 350

Also add Unit2 to the 'uses' list at the top of Unit1:

uses

 SysUtils, WinTypes,.... Menus,unit2;

Build and run the program. Form2 should appear 'floating' on top of the

table of bookings, with only the 'check availability' button visible. Check

that a day and destination can be selected with the Radio Groups, then return

to the Delphi editing screen.

When the program is running, the user may wish to close the Form2 data

entry window in to examine the table of bookings underneath. We therefore

need a way of opening Form2 again when needed for the next booking. We

can add a menu option to do this.

Double-click the 'Main Menu' icon on Form1 to bring up the Menu Editor

window. Click on 'save data' then press INSERT to produce an empty box

to the left. Add the caption 'booking':

 351

Close the Menu Editor window, then click the booking option to produce an

event handler. Add the line:

procedure TForm1.booking1Click(Sender: TObject);

begin

 form2.visible:=true;

end;

Build and run the program. Close the Form2 window by clicking the cross

in the top corner. It should then be possible to reopen the window by

clicking the 'booking' option on the menu line. Check this, then return to

the Delphi editing screen.

We are able to input booking details from the customer. The next step is to

make the computer check whether enough seats are still avaialble for the

required trip:

First we will set up an event handler to store the number of seats required as

an integer variable 'seats'. Bring Form2 to the front and double-click the

edit box to produce an event handler. Add the lines:

procedure TForm2.Edit1Change(Sender: TObject);

begin

 if edit1.text='' then

 seats:=0

 else

 seats:=strtoint(edit1.text);

end;

Include the variable 'seats' in the Public declarations section:

 public

 { Public declarations }

 seats:integer;

 end;

Compile and run the program to check that the 'seats required' edit box is

error trapped to only accept integers, then return to the Delphi editing

screen.

We can now begin the event handler procedure for the 'check availability'

button. Double-click the button to create this.

When the button is pressed, we first want the computer to record the number

of the day (1..7) and the number of the trip (1..3) which the customer has

chosen. This data can be obtained from the Radio Groups. The program

 352

should be error trapped to check that a day and trip have been selected, and

that a valid number of passengers (at least 1) has been entered. We can

build this error trapping into the event handler:

Add lines to the 'check availability' button click procedure:

procedure TForm2.Button1Click(Sender: TObject);

begin

 day:=radiogroup1.itemindex+1;

 trip:=radiogroup2.itemindex+1;

 if (day>0) and (trip>0) and (seats>0) then

 begin

 halt;

 end;

end;

This begins by transferring the day and trip numbers into variables:

 day:=radiogroup1.itemindex+1;

 trip:=radiogroup2.itemindex+1;

The conditional block will only operate if entries have been selected in both

Radio Groups, and the number of passengers is greater than zero:

 if (day>0) and (trip>0) and (seats>0) then

 begin

 halt;

 end;

A 'halt' command has been included at this point to allow the procedure to

be tested. Once we know that it works correctly, the 'halt' can be repalaced

by program lines to carry out the booking enquiry.

Add the variables day and trip to the Public declarations section:

 public

 { Public declarations }

 day,trip,seats:integer;

 end;

Build and run the program. If the 'check availability' button is clicked

before a day or destination has been selected, there should be no response.

Select a day and destination, but set the number of seats required to zero -

there should still be no response to clicking the button. Only when a valid

number of passengers is entered will the conditional block operate and the

program halts.

We now need to design the algorithm for handling the bookings. This is

quite tricky, so let's consider an example:

 353

start

input the day, destination, and

number of seats required

transfer the current bookings for day

 to a temporary array

no

has the

 first trip got more than

 50 passengers?

stop

entries

valid?

add the seats for the required destination

sort the bookings in the temporary array

into descending order

has the

 second trip got more than

 30 passengers?

has the

 third trip got more than

 15 passengers?

booking can

be accepted

not enought seats:

booking cannot be

accepted

no

no

yes

yes

yes

no

yes

 354

Suppose that on Monday the current booking situation is:

Snowdonia 22

Ffestiniog 16

Aberystwyth 12

Another group of 10 people now wish to book for the trip to the Ffestiniog

Railway; can we accept their booking?

An approach you might try is to transfer the current bookings into a

temporary array, then add the extra bookings, giving:

 temp[1]= 22

 temp[2]= 16 + 10 = 26

 temp[3]= 12

Now sort the temporary array into descending order to give:

temp[1]= 26

temp[2] = 22

temp[3] = 12

This arrangement of passengers will be possible provided:

temp[1] is not larger than 50, so they fit on the large coach

temp[2] is not larger than 30, so they fit on the small coach

temp[3] is not larger than 15, so they fit on the minibus

In this case, the booking can be accepted, and the booking array updated as

appropriate. A flowchart for this sequence is given on the next page.

Delete the 'halt' command from the 'check availability' button click

procedure and add the following lines of program:

procedure TForm2.Button1Click(Sender: TObject);

var

 swap,i,j:integer;

 temp:array[1..3]of integer;

 acceptbooking:boolean;

begin

 day:=radiogroup1.itemindex+1;

 trip:=radiogroup2.itemindex+1;

 if (day>0) and (trip>0) and (seats>0) then

 begin

 for i:=1 to 3 do

 temp[i]:=

 strtoint(form1.stringgrid1.cells[i,day]);

 temp[trip]:=temp[trip]+seats;

 355

 for i:=1 to 2 do

 for j:=i+1 to 3 do

 if temp[i]<temp[j] then

 begin

 swap:=temp[i];

 temp[i]:=temp[j];

 temp[j]:=swap;

 end;
 acceptbooking:=true;

 if (temp[1]>50) or (temp[2]>30)

 or (temp[3]>15) then

 acceptbooking:=false;

 case acceptbooking of

 true: image1.picture.loadfromfile('yes2.bmp');

 false:image1.picture.loadfromfile('no2.bmp');

 end;

 image1.visible:=true;

 end;

end;

The loop:

 for i:=1 to 3 do

 temp[i]:=strtoint(form1.stringgrid1.cells[i,day]);

copies the current bookings for the required day into a temporary array.

We add the extra seats for the destination selected by the customer:

 temp[trip]:=temp[trip]+seats;

A bubble sort puts booking totals for the three trips into descending order:

 for i:=1 to 2 do

 for j:=i+1 to 3 do

 if temp[i]<temp[j] then

 begin

 swap:=temp[i];

 temp[i]:=temp[j];

 temp[j]:=swap;

 end;

Begin by assuming that the booking can be accepted:

 acceptbooking:=true;

The 50 seat coach will be allocated to the trip with the most passengers, the

30 seat coach to the second-busiest trip, and the 15 seat minibus to the trip

with the least passengers. If there would be too many passengers for any of

the buses, the extra booking cannot be accepted:

 356

 if (temp[1]>50) or (temp[2]>30) or (temp[3]>15) then

 acceptbooking:=false;

Depending on the outcome of the enquiry, we display either a green tick

('YES2.BMP') or a red cross ('NO2.BMP') in the image box:

 case acceptbooking of

 true: image1.picture.loadfromfile('yes2.bmp');

 false: image1.picture.loadfromfile('no2.bmp');

 end;

Make sure that the picture files YES2.BMP and NO2.BMP are copied into

your COACHES directory, then build and run the program. Initially none of

the trips have any bookings, so up to 50 people can be accepted for any

destination:

If more than 50 seats are requested, a cross should be displayed. Check this,

then return to the Delphi editing screen.

Once we know whether a booking can be accepted or not, the 'check

availability' button can be replaced by the 'book' and 'cancel' buttons. Add

the lines to do this:

 case acceptbooking of
 true: image1.picture.loadfromfile('yes2.bmp');

 false: image1.picture.loadfromfile('no2.bmp');

 end;

 image1.visible:=true;

 button1.visible:=false; {turn off 'check availability'}

 357

 if acceptbooking=true then

 button2.visible:=true; {turn on 'book'}

 button3.visible:=true; {turn on 'cancel'}
 end;

 end;

It will be convenient to set up a 'clear' procedure to blank out entries on Form2

ready for the next booking. Go to the bottom of the program and add the

procedure:

procedure TForm2.clear;

begin

 radiogroup1.itemindex:=-1;

 radiogroup2.itemindex:=-1;

 seats:=0;

 edit1.text:='';

end;

Add 'clear' to the list of procedures near the top of the program:

 procedure Button1Click(Sender: TObject);

 procedure Edit1Change(Sender: TObject);

 procedure clear;

Bring Form2 to the front and double-click the 'cancel' button to produce an

event handler. Add the lines:

procedure TForm2.Button3Click(Sender: TObject);

begin

 image1.visible:=false;

 button2.visible:=false;

 button3.visible:=false;

 button1.visible:=true;

 clear;

end;

 358

This simply resets the buttons and image box without altering any of the

booking data.

Build and run the program. Enter a booking for more than 50 seats. The

cross symbol should be displayed, plus the 'cancel' button. Click 'cancel'

and check that the entries are blanked out.

Now enter a booking for less than 50 seats. This time the program should

display the tick symbol and both the 'cancel' and 'book' buttons. Click

'cancel', then return to the Delphi editing screen.

Go to Form2 and double-click the 'book' button to create an event handler. Add

the lines:

procedure TForm2.Button2Click(Sender: TObject);

var

 previous,newtotal:integer;

begin

 image1.visible:=false;

 button2.visible:=false;

 button3.visible:=false;

 button1.visible:=true;

 previous:=

 strtoint(form1.stringgrid1.cells[trip,day]);

 newtotal:=previous+seats;

 form1.stringgrid1.cells[trip,day]:=

 inttostr(newtotal);

 form1.coachrecord.booking[day,trip]:=newtotal;

 clear;

end;

 359

We begin by resetting the buttons. The next set of lines then add the new

booking to the previous total for the day and destination. We obtain the total

from the String Grid:

 previous:=strtoint(form1.stringgrid1.cells[trip,day]);

The required number of seats are added:

 newtotal:=previous+seats;

The new total is saved into the String Grid and the booking array:

 form1.stringgrid1.cells[trip,day] := inttostr (newtotal);

 form1.coachrecord.booking[day,trip] := newtotal;

Build and run the program. Enter several bookings and check that the

figures are transferred correctly to the string grid.

Try to devise test data to thoroughly check the program. You will need to

include a variety of bookings which can and cannot be accepted. When you

are convinced that the program works correctly, return to the Delphi editing

screen.

Question: A booking is shown in the illustration on the next page. Why

can't the booking be accepted?

 360

To finish the program, we need to set up the 'save data', 'load data' and

'print' options. These will be very similar to the supermarket sales program

at the start of this chapter. Carry out the following steps:

Add 'OpenDialog', 'SaveDialog' and 'PrintDialog' components to Form1:

We will begin with the 'save data' option. Click the 'SaveDialog' icon and

press ENTER to bring up the Object Inspector. Set the DefaultExt property

to DAT. Double-click alongside the Filter property to open the Filter Editor

window and add the entries:

 Data files *.dat

 All files *.*

Return to the Form1 screen and click the 'save data' menu option to create an

event handler. Add the program lines:

procedure TForm1.savedata1Click(Sender: TObject);

begin

 if savedialog1.execute then

 begin

 coachrecord.date:=edit1.text;

 assignfile(coachfile,savedialog1.filename);

 rewrite(coachfile);

 write(coachfile,coachrecord);

 closefile(coachfile);

 end;

end;

We can now move on to the 'load data' option. Click the 'OpenDialog' icon

on the Form1 grid, then press ENTER to bring up the Object inspector.

Enter the Filter items:

 Data files *.dat

 All files *.*

Click the 'load data' menu option on Form1 to create an event handler, then

add the lines:

 361

procedure TForm1.loaddata1Click(Sender: TObject);

var

 i,j:integer;

begin

 if opendialog1.execute then

 begin

 assignfile(coachfile,opendialog1.filename);

 reset(coachfile);

 read(coachfile,coachrecord);

 closefile(coachfile);

 edit1.text:=coachrecord.date;

 for i:=1 to 3 do

 for j:=1 to 7 do

 stringgrid1.cells[i,j]:=

 inttostr(coachrecord.booking[j,i]);

 end;

end;

Build and run the program. Enter test data as shown on the next page, then

select the 'save data' option. Give a file name based on the 'week

beginning' date, e.g.

 12AUG.DAT

End the program and return to the Delphi editing screen. Re-run the

program and select the 'load data' option. It should be possible to reload the

saved data. Try adding extra bookings, resaving and reloading the data a

 362

few times with different file names. When you are convinced that the

program is working correctly, return to the Delphi editing screen.

It just remains to set up a procedure to print the table of bookings. Begin by

adding 'printers' to the 'uses' list at the top of Unit1:

uses

 SysUtils, WinTypes,...Menus,unit2, printers;

Click the 'print' option on Form1 to produce an event handler, then add the

program lines below. As before, the symbol • represents a blank space to

be typed with the space bar:

procedure TForm1.print1Click(Sender: TObject);

var

 printfile: textfile;

 textline,item:string;

 i,j:integer;

begin

 if printdialog1.execute then

 begin

 assignprn(printfile);

 rewrite(printfile);

 printer.canvas.font.name:='Courier New';

 printer.canvas.font.size:=12;

 writeln(printfile,'••••Week beginning:•'+

 edit1.text);

 writeln(printfile);

 writeln(printfile,'••••Day•••••••••••••

 Snowdonia•••Ffestiniog••Aberystwyth');

 for i:=1 to 7 do

 begin

 item:='••••'+stringgrid1.cells[0,i]+

 '••••••••••••';

 textline:=copy(item,1,14);

 for j:=1 to 3 do

 begin

 item:=

 '•••••••••••••'+stringgrid1.cells[j,i];

 item:=copy(item,length(item)-12,13);

 textline:=textline+item;

 end;

 writeln(printfile,textline);

 end;

 closefile(printfile);

 end;

end;

 363

Build and run the program. Load a data file and select the 'print' option.

Check that a correctly aligned table is printed:

Week beginning: 12 August

Day Snowdonia Ffestiniog Aberystwyth

Monday 25 12 37

Tuesday 16 34 8

Wednesday 0 0 0

Thursday 0 0 0

Friday 0 0 0

Saturday 0 0 0

Sunday 0 0 0

