
 243

THIRTEEN

Developing a database (1)

This chapter is the first of two in which we look in detail at a database for
an estate agent. The program will use many of the ideas introduced
previously about saving data on disc, but we will also see how the SEEK
command can allow individual records to be accessed in a file, then edited or
deleted. We will set up search facilities to pick out particular records from a
file, and see how a database system can use multiple files:

Estate agent's database

You are asked to set up a program in Delphi which will store details
of houses for sale by an estate agent. For each property, the
following information is to be recorded:

 Address

 Price

 Number of bedrooms

 Type of property: detached house
 semi-detached house
 bungalow
 terraced house

 Land included: small garden
 large garden
 agricultural land

 Location town
 village
 country

 244

Once records have been entered, it should be possible to enter
customers' requirements and the computer will display details of
those properties which are suitable. Questions to be asked of the
customer are:

Customer name

Maximum price

Minimum number of bedrooms required

Type of property required (or no preference)

Amount of land required (or no preference)

Location required (or no preference)

The following test data can be used:

HOUSES AVAILABLE

Sea View, Fairbourne £38000 2 bedrooms
bungalow in village with small garden

37 High Street, Porthmadog £42000 3 bedrooms
terraced house in town with small garden

Pant Mawr Farmhouse, Bala £164000 4 bedrooms
detached house in country with agricultural land

The Old Chapel, Tanygrisiau £58000 4 bedrooms
detached house in village with large garden

4 Barmouth Road, Dolgellau £96000 4 bedrooms
semi-detached house in town with large garden

Tal y Bont Cottage, Borth £54000 2 bedrooms
detached house in village with small garden

 245

CUSTOMER REQUIREMENTS

Aled Jenkins
price not over £60000 minimum 3 bedrooms

Stuart Humphries
price not over £100000 minimum 2 bedrooms
must be: in village, with large garden

Ian Andrews
price not over £200000 minimum 3 bedrooms
must have agricultural land

Elizabeth Edwards
price not over £100000 minimum 2 bedrooms
must be a detached house

Begin the program by setting up a directory ESTATE and saving a Delphi
project into it. Use the Object inspector to Maximize the Form, and drag
the dotted grid to nearly fill the screen.

The project we are undertaking is quite complex, so it would be useful to
draw a top down structure diagram to clarify the design. This is done on the
next page.

The project can be divided into two main sections:

• house records system to keep details of the properties available
• customer records system to keep details of customers and their

requirements, and to select properties which are suitable for each
customer.

Within each of these sections there will be a series of data processing
operations required:

• setting up a new file ready to store records
• adding a record to the file
• selecting and displaying a particular record from the file
• editing an existing record
• deleting a record which is no longer required, for example when a

house is sold or a customer purchases a house.

An additional procedure will be needed to check for suitable properties to
meet the customers' requirements.

 246

Top down structure diagram

Set up
 new file

Estate agent's
database

House records Customer
records

Display index
of records

Add new
record

Set up
 new file

Display index
of records

Add new
record

Display selected
record

Edit
record

Delete
record

Display selected
record

Edit
 record

Delete
 record

Select
suitable
houses

Compare properties
and customer
requirements

Display list
of suitable

houses

 247

The project is going to require a complex menu system, but fortunately
Delphi provides an easy way to set this up. Go to the STANDARD
component menu and press the 'Main Menu ' button:

Drag the 'Main Menu' component down onto the form:

The 'Main Menu ' is different other components we have used. It appears as
a fixed size icon and can be placed anywhere on the form - the position does
not matter.

Double-click the icon and a new window will appear to show the menu
system we are constructing. Press ENTER to bring up the Object Inspector
window, then type the caption 'House records'. Press ENTER and this will
appear in the blue box on the menu bar:

Click on the top line alongside the 'House records' caption. The blue box
will move to this point. Press ENTER to show the Object Inspector then
add a caption 'Customer records'.

Main Menu

 248

Again click alongside and complete the main menu with an 'Exit ' option:

House records

We will now develop the part of the database which deals with house
records.

Click on 'House records' and a box will appear underneath. Click the box
then enter the caption 'Set up new file'. Press ENTER and a further box
will appear underneath.

 Add the remaining menu items in a similar way:
 'Display house index'
 'Add house record'

Compile and run the program. The three menu options 'House records',
'Customer records' and 'Exit' appear on the top line of the screen. Clicking
'House records' should produce a drop-down menu with the list of choices:

 249

Return to the Delphi editing screen. Bring the Form1 window to the front.
Double-click the word 'Exit ' on the menu line of the Form and an event
handler procedure will be created. Add a 'halt ' command to this:

procedure TForm1.Exit1Click(Sender: TObject);
begin
 halt;
end;

Click on the 'House records' caption at the top of the grid. The drop-down
menu should appear. Click 'Set up new file' and an event handler procedure
appears. Add the lines:

procedure TForm1.Setupnewfile1Click(Sender:TObject);
begin
 assignfile(housefile,'houses.dat');
 rewrite(housefile);
 closefile(housefile);
end;

Before we can use the program we must define the fields for a record to
store house data. Go to the type heading at the top of the program and add
lines just below the heading:

type
 house=record
 address:string[50];
 price:real;
 bedrooms:integer;
 housetype,land,location:integer;
 end;
 TForm1=class(TForm)

We also need to add lines to the Public declarations to allocate variable
names:

 public
 { Public declarations }
 houserecord:house;
 housefile:file of house;

 end;

The next section we will develop is the 'Add house record' option.

Go to the Delphi editing screen and click the short-cut button to add a new
form . Choose 'Blank form'. Use the Object Inspector to set its BorderStyle
property to 'Dialog', and its FormStyle property to 'StayOnTop'.

 250

Set up Form2 for input of house details by adding the components shown:

• Three Edit Boxes, and Labels with the captions: 'Address', 'Price' and

'Number of bedrooms'.
• A Radio Group with the caption 'Type of property'. Double-click

alongside the Items property to enter the labels for four buttons:
'detached house', 'semi-detached house', 'bungalow' and 'terraced
house'.

• A Radio Group with the caption 'Land included'. This should contain
three buttons with the labels: 'small garden', 'large garden', and
'agricultural land '.

• A Radio Group with the caption 'Location'. This should contain three
buttons with the labels: 'town', 'village', and 'country '.

• Three Buttons with the captions: 'save', 'cancel', and 'close'.

 For each of the Radio Groups, set the ItemIndex property to 0.

 Use the Project Manager to bring the Unit1 program window to the front.
Add 'unit2' to the 'uses' list:

 uses
 SysUtils,WinTypes,.....Dialogs,Menus,unit2 ;

 251

 Go to Form1 and click 'House records' on the menu line, followed by 'Add
house record'. An event handler will appear. Add the command to open the
Form2 window:

 procedure TForm1.Addhouserecord1Click(Sender:TObject);
 begin
 form2.visible:=true;
 end;

 Now use the Project Manager to bring the Form2 window to the front.

Double-click the 'close' button and add a command to the event handler to
close the Form:

 procedure TForm2.Button3Click(Sender: TObject);
 begin
 form2.visible:=false;
 end;

 Build and run the program. Select 'House records/Add house record'. The
house input window Form2 should appear. Click the 'close' button and the
window should disappear. Click 'exit' to return to the Delphi editing screen.

Go to the Unit2 program screen. It would be useful to have a procedure to
blank out the Edit Boxes on the house input screen and to reset the Radio
Group buttons. Insert a procedure to do this at the end of the program:

procedure TForm2.clear;
begin
 edit1.text:='';
 edit2.text:='';
 edit3.text:='';
 radiogroup1.itemindex:=0;
 radiogroup2.itemindex:=0;
 radiogroup3.itemindex:=0;
end;

Add the 'clear' procedure to the list under the type heading:

 type

 Button3: TButton;
 procedure Button3Click(Sender: TObject);
 procedure clear;

The procedure can be used to blank out the Edit Boxes if the user presses
'cancel'. Double-click the 'cancel' button and add a line:

 252

procedure TForm2.Button2Click(Sender: TObject);
begin
 clear;
end;

Also add 'clear' to the 'close' button click procedure:

procedure TForm2.Button3Click(Sender: TObject);
begin
 clear;
 form2.visible:=false;
end;

Build and run the program. Set up a new house file then go to the 'Add
house record' screen. Check that text or figures can be entered in the three
Edit Boxes, and that this can be cleared by pressing the 'cancel' button.
Close the house input window with text still showing in the Edit Boxes and
check that this has been cleared if you reselect the 'Add house record'
option. Exit from the program and return to the Delphi editing screen.

We can now set up event handlers to transfer data into the fields of the house
record. Double-click on the 'Address' Edit Box and add the line:

procedure TForm2.Edit1Change(Sender: TObject);
begin
 form1.houserecord.address:=edit1.text;
end;

'Price' should be input as a real number. Double-click the 'price' Edit Box to
create the event handler, then add the lines:

procedure TForm2.Edit2Change(Sender: TObject);
begin
 if edit2.text='' then
 form1.houserecord.price:=0
 else
 form1.houserecord.price:=strtofloat(edit2.text) ;

 end;

The 'Number of bedrooms' Edit Box requires a similar event handler, but
this time the input is an integer. Double-click the Edit Box and add the lines:

procedure TForm2.Edit3Change(Sender: TObject);

begin
 if edit3.text='' then

 253

 form1.houserecord.bedrooms:=0
 else
 form1.houserecord.bedrooms:=strtoint(edit3.text);
end;

We must finish by telling the computer that Form2 will be accessing
'houserecord' which belongs to Form1. Do this by adding a 'uses' entry
under the 'implementation' heading:

implementation
{$R *.DFM}
uses
 unit1;

Run the program. Set up a new house file then go to the 'Add house record'
screen. Check that the 'price' and 'bedrooms' Edit Boxes are error trapped
to only accept numbers. Return to the Delphi editing screen.

Double-click the 'save' button to set up its event handler, and add lines of
program to save the record into the house file. The procedure is similar to
one we wrote in the airport program in chapter 6:

procedure TForm2.Button1Click(Sender: TObject);
begin
 with form1 do
 begin
 houserecord.housetype:=radiogroup1.itemindex;
 houserecord.land:=radiogroup2.itemindex;
 houserecord.location:=radiogroup3.itemindex;
 assignfile(housefile,'houses.dat');
 reset(housefile);
 seek(housefile,filesize(housefile));
 write(housefile,houserecord);
 closefile(housefile);
 end;
 clear;
end;

Remember that houserecord and housefile are variables belonging to
Form1. The command:
 with form1 do...
is telling the computer to assume that variables belong to Form1. This saves
us having to use the 'form1.' prefix every time.

For example, we can write:
 assignfile(housefile,'houses,.dat');
instead of:

 254

 assignfile(form1.housefile,'houses.dat');

The lines:

 houserecord.housetype:=radiogroup1.itemindex;
 houserecord.land:=radiogroup2.itemindex;
 houserecord.location:=radiogroup3.itemindex;

record the numbers of the buttons selected in the Radio Groups as codes
for: the type of house, land included, and location of the property.

The file is opened using:

 assignfile(housefile,'houses.dat');
 reset(housefile);

The SEEK command moves to the end of the existing file and the new record
is added. Finally, the file is closed so that the data is secure:

 seek(housefile,filesize(housefile));
 write(housefile,houserecord);
 closefile(housefile);

 255

We can now test the input procedure:

• Build and run the program.
• Choose 'House records/Set up new file'.
• Choose 'House records/Add house record' and enter the first house from

the list of test data: Sea View, Fairbourne. Click the 'save' button to
transfer this to disc.

• Enter the record for the second property, 37 High Street, Porthmadog,
and save this.

• Click ' close' to return to Form1, then click 'Exit ' to end the program.
• Check that the records have been saved on disc using the NOTEPAD

utility. Select the file 'houses.dat' and the addresses of the two properties
should appear:

Don't worry that the price, bedrooms, and property codes are not shown.
NOTEPAD only displays text, not data which is in number format.

Return to the Delphi editing screen. Use the 'New form' short-cut button to
create Form3 which will be used to display a list of the houses. Set the
BorderStyle property to 'Dialog' and the FormStyle property to
'StayOnTop'. Add a List Box to the form, along with a Label 'Houses
available', and a Button with the caption 'close':

 256

To allow forms 1 and 3 to exchange data, add unit3 to the 'uses' line of
Form1:

 SysUtils, WinTypes,....unit2,unit3 ;

and add a 'uses' line to the implementation section of Form3:

implementation
{$R *.DFM}
uses
 unit1;

Double-click the 'close' button on Form3 to create an event handler and add
the line:

procedure TForm3.Button1Click(Sender: TObject);
begin
 form3.visible:=false;
end;

Go to Form1 and click 'House records/Display house index'. Add a line to
the event handler which is created:

procedure TForm1.Displayhouseindex1Click
 (Sender: TObject);
begin
 form3.visible:=true;
end;

Build and run the program. Select the option 'Display house index'. Check
that Form3 appears, and that it disappears again when the 'close' button is
pressed. Return to the Delphi editing screen.

We can now write a procedure to display the house addresses in the List Box
on Form3. Bring the Form3 window to the front. Click on the dotted grid
and press ENTER to bring up the Object Inspector. Click the Events tab,
then double click alongside 'OnActivate'. This creates an event handler
which will operate each time the Form3 window is opened on the screen.
Add lines to the procedure:

procedure TForm3.FormActivate(Sender: TObject);
begin
 listbox1.clear;
 assignfile(form1.housefile,'houses.dat');
 reset(form1.housefile);
 while not eof(form1.housefile) do
 begin
 read(form1.housefile,form1.houserecord);
 listbox1.items.add(form1.houserecord.address);
 end;
end;

 257

This begins by blanking out the list box. We then open the house file:

 assignfile(form1.housefile,'houses.dat');
 reset(form1.housefile);

A loop continues to repeat as long as the end of the file has not yet been reached:

while not eof(form1.housefile) do ...

Each time around the loop the next house record is loaded, and the address
field is copied into the List Box:

 read(form1.housefile, form1.houserecord);
 listbox1.items.add(form1.houserecord.address);

We just need another procedure to close the Form3 window if some other
menu option is selected. Bring up the Object Inspector for Form3 again and
select the Events list. Double-click alongside 'OnDeactivate' and add the
line:

procedure TForm3.FormDeactivate(Sender: TObject);
begin
 form3.visible:=false;
end;

Build and run the program. Select the 'Display house index' option. Check
that the two houses you entered earlier are listed.

 258

Go to the 'Add house record' option and add the remaining four houses in
the table of test data on page 244. Return to the house index screen and
check that all six properties are now listed. Return to the Delphi editing
screen.

The next step is to work on a display screen for the house records. Use the
'New form' short-cut button to create Form4.

Bring up the Object Inspector and set the FormStyle property to
'StayOnTop' and the BorderStyle property to 'Dialog'.

Add three Edit Boxes to Form4, with Labels alongside for 'Address', 'Price'
and 'Bedrooms':

We are going to display the 'Property type' using a Combo Box component -
this is selected from the STANDARD menu:

Combo Box

 259

Use the mouse to position the Combo Box on the form in the same way as an
Edit Box. The only difference you notice is a small button at the right hand
side of the box with a downwards pointing arrow. Place a Label alongside,
with the caption 'Property type'.

Add two more Combo Boxes, with Labels alonside for 'Land included' and
'Location'.

Select the 'Property type' Combo Box and press ENTER to bring up the
Object Inspector. Double-click in the right hand column alongside 'Items'
and the String List Editor window will appear. Enter a list of the four types
of property:

detached house
semi-deteched house
bungalow
terraced house

When the program runs, the Combo Box will be given the code number for
the type of property. It can then select and display the correct description
from this list.

Set up the 'Items' lists in a similar way for the other two Combo Boxes:

Land included: small garden
 large garden
 agricultural land

 260

Location: town
 village
 country

Complete Form4 by adding three Buttons with the captions: 'close', 're-save
edited record', and 'delete record'.
We need Form4 to appear and display the details of a property when the
user clicks on one of the addresses in the 'Houses available' list. The
position of the address in the list corresponds to the position of the record in
the file:

House File

Record 0
Record 1
Record 2
Record 3
Record 4
Record 5

Bring the Form3 window to the front and double-click on the ListBox to
produce an event handler. Add the lines:

procedure TForm3.ListBox1Click(Sender: TObject);
begin
 filepointer:=listbox1.itemindex;
 form3.visible:=false;
 form4.visible:=true;
end;

The Itemindex property for the ListBox gives the number of the line
selected. We will record this as the variable 'filepointer ' so that the correct
house record can be loaded and displayed. Add 'filepointer ' to the Public
declarations:

 public
 { Public declarations }
 filepointer:integer;
 end;

 261

Also add 'unit4' to the 'uses' line:

uses
 SysUtils, WinTypes,....StdCtrls,unit4 ;

We now need a procedure to load and display details of the selected property
on the Form 4 screen. Bring Form 4 to the front. Click on the dotted grid
and press ENTER, then click the Events tab.

Double-click 'OnActivate' to produce an event handler, then add the lines:

procedure TForm4.FormActivate(Sender: TObject);
begin
 with form1 do
 begin
 assignfile(housefile,'houses.dat');
 reset(housefile);
 seek(housefile,form3.filepointer);
 read(housefile,houserecord);
 closefile(housefile);
 end;
 edit1.text:=form1.houserecord.address;
 edit2.text:=floattostrf
 (form1.houserecord.price,ffFixed,8,0);
 edit3.text:=inttostr(form1.houserecord.bedrooms);
 combobox1.itemindex:=form1.houserecord.housetype;
 combobox2.itemindex:=form1.houserecord.land;
 combobox3.itemindex:=form1.houserecord.location;
end;

This begins by opening the house file:

 assignfile(housefile,'houses.dat');
 reset(housefile);

We then use the SEEK command and the 'filepointer ' variable to load the
required record from the file; this will correspond to the address line selected
in the 'Houses available' list:

 seek(housefile,form3.filepointer);
 read(housefile,houserecord);

The lines:

 combobox1.itemindex:=form1.houserecord.housetype;
 combobox2.itemindex:=form1.houserecord.land;
 combobox3.itemindex:=form1.houserecord.location;

make use of the code numbers for property type, land and location to select
and display the correct text items from the Combo Box lists which we set up
earlier.

 262

Double-click the 'close' button of Form4 to create an event handler, then add
the lines to close the window and return to the 'Houses available' list:

procedure TForm4.Button1Click(Sender: TObject);
begin
 form4.visible:=false;
 form3.visible:=true;
end;

Finally add a 'uses' command under the implementation heading, so that
variables from Forms 1 and 3 can be accessed:

implementation
{$R *.DFM}
uses
 unit1,unit3;

Build and run the program. Select the option 'Display house index'. When
the list appears, click on 'Sea View, Fairbourne' and details should be
displayed:

Use the 'close' button to return to the 'Houses available' list, then check that
details of the other properties can also be displayed. Finally exit to the Delphi
editing screen.

 263

We have made a good start in setting up the estate agent's database. The
'edit' and 'delete' options for house records will be completed in the second
chapter covering this project.

SUMMARY

 In this chapter you have:
• seen a top-down structure diagram for a multi-file database
• set up a menu system using the Main Menu component, including a drop-

down menu
• set up a record structure containing fields of different data types
• made use of the 'uses' command to allow one Form to access variables

belonging to another Form
• seen how the 'itemindex' property of a List Box indicates which item has

been selected when the mouse is clicked on the list
• used the 'seek' command to load a particular record from a file
• used a Combo Box component to display one a set of text strings

