
THREE THREE THREE THREE

Multiple windows Multiple windows Multiple windows Multiple windows

Often in a Windows application it is convenient to have more than one window in use.
This provides a natural way of breaking down a large and complex project into a
number of simpler modules.
Consider a project to computerise the data processing needs of a business. The
software might be required to carry out a number of different functions as shown

below:

A diagram of this kind, which subdivides the overall project into a number of subsidiary
modules, is known as a top-down structure diagram. In Delphi, each of the subsidiary
modules would have its own program unit and screen form. Let's go some way towards
setting up the structure for this project.
Set up a new sub-directory MULTI in your work area, open a new Delphi project and

save it into the sub-directory.
We will design Form1 to be a menu screen. Use the Object Inspector to set the
WindowState to Maximized, and drag the grid to nearly fill the screen. Add four buttons
and label them:

Double-click the EXIT button to create an event handler procedure, and add the halt
command:

procedure TForm1.Button4Click(Sender: TObject);
begin
 halt; halt; halt; halt;
end;

Run the program to check that it exits correctly when the button is clicked.
We are now going to create another program unit and screen form which would run the

customer accounts section of the completed data processing system. Click on the New
form short cut button:

A selection window will appear. Choose the Blank form option and click the OK button:

Another grey dotted grid window will appear, this time labelled Form2. Delphi has also
produced a program unit called Unit2 to operate and control it. Use the Save Project
short cut button to save Unit2 into your project sub-directory.

In a large Delphi project there may be a dozen or more screen forms and their
accompanying program units, so it is important to be able to locate the particular
window you wish to work on. To do this, select the VIEW drop down menu, then click
the PROJECT MANAGER option. A list will be displayed of all units and forms
currently in the project. To select a particular window, click on the unit name then click

either the View unitView unitView unitView unit or View formView formView formView form button.

We will now add program instructions to link the units. Using the project manager table,
bring the Form1 window to the front of the screen. Double-click the 'Customer
accounts' button to create an event handler procedure. Add a line of program:

procedure TForm1.Button1Click(Sender: TObject);
begin
 f f f form2.visible:=true;orm2.visible:=true;orm2.visible:=true;orm2.visible:=true;
end;

Scroll towards the top of the program to find the UsesUsesUsesUses line and add 'unit2' to the list of
entries:

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls, Unit2Unit2Unit2Unit2;

Go to the COMPILE drop down menu, but this time choose the Build AllBuild AllBuild AllBuild All option. Build Build Build Build
AllAllAllAll is necessary for linking together the units of a multi-window application.
When the project has compiled successfuly, run the program.

Clicking the 'customer accounts' button will make the Form2 window appear. Clicking
the cross in the corner of Form2 will close the window. Try this a few times then use
the 'Exit' button to return to the Delphi editing screen.
Use the Program ManagerProgram ManagerProgram ManagerProgram Manager table to select the Form2 window. Press ENTER to bring up

the Object Inspector, and set the WindowStateWindowStateWindowStateWindowState to MaximizedMaximizedMaximizedMaximized.
Drag the Form2 window larger until it nearly fills the screen. Add a button and give it
the caption:

Double-click the button to create an event handler, and add a line of program:

procedure TForm2.Button1Click(Sender: TObject);
begin
 form2.visible:=false; form2.visible:=false; form2.visible:=false; form2.visible:=false;
end;

Finish by adding a label with the caption 'Customer accounts' on the Form2 grid, using
a large type face.

From the COMPILE drop down menu, choose Build AllBuild AllBuild AllBuild All again. When the project is
successfuly compiled, run it.
Pressing the 'Customer accounts' button will open up Form2Form2Form2Form2 to fill the screen. Pressing
the 'close' button will close the Form2 window and return you to the Form1Form1Form1Form1 window. Try
this a few times, then exit to the Delphi editing screen.

See if you can complete the module system by creating Forms and Program Units for
the other two menu options: Stock control and Staff wages. In each case you will need
to:

• add a new form
• save this in the project sub-directory
• create an event handler procedure for the button on Form1 and add a line of

program to make the new form visible
• make an entry in the Form1 Uses list to include the new unit
• use the object inspector to maximize the new form

• add a button to the form. Create an event handler procedure with a command to
close the form when the button is pressed

• give the the new form a label heading
Use COMPILE and Build AllBuild AllBuild AllBuild All, then try out the completed menu system.

Paris Tourist informationParis Tourist informationParis Tourist informationParis Tourist information

We are now ready to tackle a substantial programming
project in Delphi, putting into practice many of the ideas
learned in the course so far:

Set up a sub-directory in your work area and name

this PARIS. Start a new Delphi project and save into
the PARIS sub-directory.
Set the WindowStateWindowStateWindowStateWindowState to MaximizedMaximizedMaximizedMaximized, and drag Form1
larger to nearly fill the screen.

Add an image box and load the bitmap file PARISMAP.BMP which is provided. Place
buttons at the ends of the label lines on the map, and add captions:

Add an event handler procedure for the 'end program' button:

procedure TForm1.Button6Click(Sender: TObject);
begin
 halt; halt; halt; halt;
end;

Compile and run the program to check that it exits correctly.

The purpose of the program will be to display photographs of places of interest in Paris
when the user clicks the appropriate button. It would be convenient for the photographs
to appear in a separate small window which can 'float' on top of the map screen. To set
this up, first click the New form short cut button and select a Blank FormBlank FormBlank FormBlank Form. A new
window labelled Form2Form2Form2Form2 will appear.
We will now configure the Form2Form2Form2Form2 window ready to display the photographs.

Bring up the Object Inspector window by clicking on the Form2 grid and pressing
ENTER. Find the ColorColorColorColor property and set this to clWhiteclWhiteclWhiteclWhite. The grid will now be displayed
in white.
Adjust the size of the Form2 window to be a square, approximately the same height as
the map image box on Form1. When the program is running, we do not wish the user

to be able to adjust the size of this window - its size can be fixed by selecting the
BorderStyleBorderStyleBorderStyleBorderStyle property on the Object Inspector, and setting this to bsDialogbsDialogbsDialogbsDialog.

Now add an image box and button to Form2 as shown above. Give the button the
caption:

Again using the Object Inspector for Form2, find the FormStyle property and set this to
fsStayOnTop. This will ensure that the photograph window will 'float' on top of the map
screen while the program is running.

Double-click the 'close' button to create an event handler. Add a line of program to
close the window:

procedure TForm2.Button1Click(Sender: TObject);
begin
 form2.visible:=false; form2.visible:=false; form2.visible:=false; form2.visible:=false;
end;

A series of photographs have been provided for you in bitmap format:
 PARIS1.BMP River Seine
 PARIS2.BMP Eiffel Tower

 PARIS3.BMP Louvre
 PARIS4.BMP Norte Dame
 PARIS5.BMP Arc de Triomphe
Use Windows Explorer to copy these into your PARIS sub-directory. The program will
need to have access to these files while it is running.
Click on the dotted grid of Form1 to bring this to the front. Double-click the 'River Seine'
button to create an event handler and add the lines of program:

procedure TForm1.Button1Click(Sender: TObject);
begin
 form2.visible:=true; form2.visible:=true; form2.visible:=true; form2.visible:=true;
 form2.image1.picture.loadfromfile('paris1.bmp'); form2.image1.picture.loadfromfile('paris1.bmp'); form2.image1.picture.loadfromfile('paris1.bmp'); form2.image1.picture.loadfromfile('paris1.bmp');
end;

The purpose of these instructions are to make the Form2 window visible on top of the
map, and to load the photograph of the River Seine into the image box on the form.
Scroll towards the top of the program and add Unit2 to the Uses line:

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, StdCtrls, ExtCtrls, unit2unit2unit2unit2;

Use the Build All option on the COMPILE drop down menu, then run the program.

The map screen will first be displayed. Clicking the 'River Seine' button should open
the Form2 window and display the photograph. Notice that the Form2 window can be
moved around on top of the map by dragging the top blue border of the window. Click
the 'close' button to hide Form2.
Exit from the program and return to the Delphi editor. Bring Form1 to the front and
double-click on the 'Eiffel Tower' button. Add lines of program to the event handler:

procedure TForm1.Button2Click(Sender: TObject);
begin
 form2.visible:=true; form2.visible:=true; form2.visible:=true; form2.visible:=true;
 form2.image form2.image form2.image form2.image1.picture.loadfromfile('paris2.bmp');1.picture.loadfromfile('paris2.bmp');1.picture.loadfromfile('paris2.bmp');1.picture.loadfromfile('paris2.bmp');
end;

This is very similar to the event handler for the 'River Seine' button, except that this
time the file name is 'paris2.bmp'. Use Build All, then run the program to check that a
picture of the Eiffel Tower is displayed.

Return to the editing screen and see if
you can set up the event handler
procedures to display the other three
photographs. Save the finished project
in the PARIS sub-directory.

