
 211

TWELVE

Procedural programming

Delphi programs are divided into procedures. These are sections of the
overall program with specific tasks, such as responding to a button being
pressed or a character being typed into an edit box. If you look back for a
moment at the ADD program which we produced in chapter 4, this is made
up of three separate procedures which are listed under the implementation
heading:

implementation
{$R *.DFM}

procedure TForm1.Edit1Change(Sender: TObject);
begin
 if edit1.text='' then
 A:=0
 else
 A:=strtoint(edit1.text);
end;

procedure TForm1.Edit2Change(Sender: TObject);
begin
 if edit2.text='' then
 B:=0
 else
 B:=strtoint(edit2.text);
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 C:=A+B;
 edit3.text:=inttostr(C);
end;

end.

Notice that each procedure has a begin...end pair around the lines of
program which do the processing. There is a separate end command,
followed by a full stop, for the overall program.

When you carry out a block analysis you should draw an outer box around
each procedure, as well as boxes around any loops or conditional blocks
inside the procedures.

 212

The procedures in the ADD program are all 'event handlers' which respond
to mouse or keyboard input:

The event handler procedures are set up automatically by the Delphi system
if we double-click components or select from the Events list in the Object
Inspector.

Sometimes, however, it is useful to set up our own procedures in a program.
The following project demonstates how this is done:

House heating costs

A two storey house is rectangular in plan, with a width of 16 metres
and a length of 18 metres. The ceilings are 2.5 metres high.

The householders wish to keep the ground floor rooms at a constant
temperature of 20°C and the first floor rooms at a constant
temperature of 15°C. The average outside temperature during the
year is 8°C.

It is known that for this particular type of house, the heating cost is 4
pence per cubic metre of room space per year for every Centigrade

procedure Edit1Change
responds to a character being

typed into EditBox1

procedure Edit2Change
responds to a character being

typed into EditBox2

procedure Button1Click
responds to Button1

being pressed

 213

degree by which the room temperature exceeds the outside
temperature average.

The householder has the option of installing double glazing and loft
insulation at a cost of £680.00. This will lead to a 20% reduction in
heating costs. The householder will go ahead with the insulation if
there will be sufficient saving to pay for its cost within 8 years.

Calculate whether the householder should insulate the house or not.

A computer program is now needed to carry out similar
calculations for a variety of different houses. You may assume that
all houses will be two stories high and rectangular in plan. Also
assume that insulating the house will reduce heating costs by 20%,
and that the average outside temperature will be 8°C.

Your program should input the following data:
• width of the house
• length of the house
• height of ceilings
• required downstairs temperature
• required upstairs temperature
• estimated cost of insulation

As before, the heating cost will be 4 pence per cubic metre of room
space per year for every Centigrade degree by which the room
temperature exceeds the outside temperature average.

The program should output:
• the annual heating costs
• the saving on heating bills over 8 years with insulation
• a message to indicate whether or not insulation should be

installed.

This is going to be quite a complex calculation program, so let's try to break
the problem down into stages:

1. Input the house size, required temperatures, and insulation cost.
2. Calculate the heating costs per year for the uninsulated house.
3. Calculate the saving over 8 years if insulation is installed.
4. Decide whether or not to install insulation.

We will begin by setting up a program to carry out the inputs for step 1:

 214

Set up a directory HEATING and save a Delphi project into it. Maximize
the Form, and drag the dotted grid to nearly fill the screen.

Place an Image Box on the form and load the bitmap file HEATCOST.BMP.
Put six Edit Boxes alongside or below the labels on the diagram; these will
be used for entering the length (m), width (m) , ceiling height (m),
downstairs temperature (C), upstairs temperature (C), and insulation
cost (£).

Add a List Box at the bottom of the Form which will be used later for
displaying the results of the calculations. Complete the form by adding a
button with the caption 'calculate'.

Go to the Public declarations section and list the variables which will be
needed to store the input values:

 public
 { Public declarations }
 length,width,height:real;
 downtemp,uptemp:integer;
 insulation:real;
 end;

 215

Double-click the 'length' Edit Box to create an event handler and add the
lines:

procedure TForm1.Edit1Change(Sender: TObject);
begin
 if edit1.text='' then
 length:=0
 else
 length:=strtofloat(edit1.text);
end;

Produce similar event handlers for the 'width ' and 'height' Edit Boxes which
also input decimal numbers.

Double-click the 'Downstairs temperature' edit box and add the lines to
input an integer value:

procedure TForm1.Edit4Change(Sender: TObject);
begin
 if edit4.text='' then
 downtemp:=0
 else
 downtemp:=strtoint(edit4.text);
end;

The 'Upstairs temperature' Edit Box will require a similar integer input
procedure.

Complete the input event handlers with the procedure to accept a decimal
number for 'Insulation cost':

procedure TForm1.Edit6Change(Sender: TObject);
begin
 if edit6.text='' then
 insulation:=0
 else
 insulation:=strtofloat(edit6.text);
end;

Compile and run the program. Check that the temperature input boxes are
correctly error trapped to accept whole numbers, and that the other four
input boxes are error trapped for decimal numbers. Return to the Delphi
editing screen.

We can now consider how to carry out steps 2, 3 and 4 of the program
which we listed on page 197. These should occur when the 'calculate'
button is pressed.

 216

It would be possible to put all the lines of program for steps 2, 3 and 4 into
the event handler for the 'calculate' button, but this would become long and
complicated - increasing the chances of making a mistake. Instead, we will
create three new procedures: YEARCOST, SAVING and DECISION.
These will need to be called from inside the event handler for the button.

Double-click the 'calculate' button and add the lines:

procedure TForm1.Button1Click(Sender: TObject);
begin
 yearcost;
 saving;
 decision;
end;

Go now to the 'type' section near the top of the program and find the point
where the other procedures are listed. Add our three new ones to the list:

 procedure Edit5Change(Sender: TObject);
 procedure Edit6Change(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 procedure yearcost;
 procedure saving;
 procedure decision;
 private
 { Private declarations }

Now move down to the bottom of the program and add the procedure
blocks. At the moment they do not contain lines of program to carry out
any processing - just comments to indicate their purpose:

procedure TForm1.Button1Click(Sender: TObject);
begin
 yearcost;
 saving;
 decision;
end;

procedure TForm1.yearcost;
begin
 {calculate annual heating cost}
end;

 217

procedure TForm1.saving;
begin
 {calculate saving in 8 years with insulation}
end;

procedure TForm1.decision;
begin
 {decide if insulation should be installed}
end;

end.

As in the case of the event handler procedures provided by Delphi, we must
write 'TForm1.' before the names of our own procedures to show that they
belong to Form1 of the project.

We can now begin work on the first of the procedures 'yearcost' which will
calculate and display the annual heating costs for the house.

We need to calculate the volume of air heated for each storey of the house.
This can be found with the formula:

 volume = length * width * height

The heating cost for the ground floor of the house will depend on the
difference between the required temperature 'downtemp' and the outside
temperature which averages 8°C.

width
length

height

8°

uptemp

downtemp

 218

The annual downstairs heating cost is given by the formula:

downstairs cost = volume * (downtemp - 8) * 0.04

The factor 0.04 is the heating cost of 4 pence (i.e. £0.04) for each cubic
metre of air space, for each °C hotter than the outside average temperature.

A similar formula gives the annual upstairs heating cost:

upstairs cost = volume * (uptemp - 8) * 0.04

and the total annual heating cost for the house will be:

annual cost = upstairs cost + downstairs cost

Let's now put these formulae into the 'yearcost' procedure. Add the lines:

procedure TForm1.yearcost;
var
 volume,upcost,downcost:real;
begin
 {calculate annual heating cost}
 volume:=length*width*height;
 downcost:=volume*(downtemp-8)*0.04;
 upcost:=volume*(uptemp-8)*0.04;
 yeartotal:=downcost+upcost;
end;

Add the variable 'yeartotal' to the list under the Public declarations
heading:

 public
 { Public declarations }
 length,width,height:real;
 downtemp,uptemp:integer;
 insulation, yeartotal :real;
 end;

Other procedures will need to use the 'yeartotal' result, so it must be
publicly available to them. The variables 'volume','upcost' and 'downcost'
are used only in the yearcost procedure, so there is no need to make them
public.

Now that we have calculated the annual heating cost we must display it on
the screen:

 219

Add lines to the yearcost procedure to clear the List Box then display the
annual heating cost:

procedure TForm1.yearcost;
var
 volume,upcost,downcost:real;
 textline:string;
begin
 {calculate annual heating cost}
 volume:=length*width*height;
 downcost:=volume*(downtemp-8)*0.04;
 upcost:=volume*(uptemp-8)*0.04;
 yeartotal:=downcost+upcost;
 listbox1.clear;
 textline:='Annual heating costs: £' +
 floattostrf(yeartotal,ffFixed,8,2);
 listbox1.items.add(textline);
end;

Compile and run the program using the example figures given in the
question. Press the 'calculate' button to check that the yearly heating cost is
calculated correctly, then return to the Delphi editing screen.

 220

The next procedure to work on is 'saving', which should calculate the
amount saved over an eight year period if insulation is installed. This will be
given by the formula:

 8 year saving = annual heating cost * 8 * 20%

Add lines to the 'saving' procedure to calculate and display this result:

procedure TForm1.saving;
var
 textline:string;
begin
 {calculate saving in 8 years with insulation}
 saved:=yeartotal*8*0.2;
 textline:='Amount saved in 8 years with insulatio n: £'
 + floattostrf(saved,ffFixed, 8,2);
 listbox1.items.add(textline);
end;

The variable 'saved' should be added to the list of public declarations:

 { Public declarations }

 insulation,yeartotal, saved :real;

Compile and run the program. Use the test data to check that the amount
saved is displayed correctly, then return to the Delphi editing screen.

 221

The final stage in the program is to decide whether or not it would be
economic to instal insulation. This is done in the procedure 'decide'. Add
the lines of program:

procedure TForm1.decision;
begin
 {decide if insulation should be installed}
 if saved>insulation then
 listbox1.items.add
 ('It would be worth installing insulation')
 else
 listbox1.items.add
 ('It would NOT be worth installing insulati on');
end;

The procedure compares the amount which would be saved over the 8 year
period with the cost of the insulation, and displays advice according to which
is the larger figure.

Compile and run the completed program. Enter the test data and check that
correct advice is given, then try the program for other sizes of house,
temperatures, and insulation costs. It should be most worthwhile insulating
the house if the occupants want to keep the rooms very warm, or if the
insulation is cheap to install:

 222

For our next project we will develop another simulation program. This will
require some complicated programming, and is best broken down into a
series of procedures as we did with the house heating costs program:

Rabbit population model

A population of rabbits lives in burrows in a warren. The
characteristics of this population are as follows:
• The rabbits form pairs and breed, each pair producing a litter each

month throughout the year.
• Newborn rabbits are equally likely to be of either sex.
• A rabbit is able to start breeding so that it produces its first litter

at the age of three months.

Some foxes live in a wood nearby and eat the rabbits. The rabbit
population is also affected by seasonal factors.

A zoologist wishes to simulate the fluctuations in the rabbit
population using a computer. The simulation is to be based on the
following assumptions:
• The size of litters is in accordance with these probabilities

 size probability
7 0.1
6 0.2
5 0.4
4 0.2
3 0.1

• By the end of each month half of the rabbits are eaten by the foxes
and a further one eighth of the rabbits also die from other causes.

• In each of the four winter months, a further eighth of the rabbits
die of starvation.

• Any rabbit in the population is equally likely to be one of the
casualties.

The zoologist wishes to investigate the effects of varying the size of
the initial rabbit population, and varying the percentage of rabbits
eaten by foxes if the amount of fox hunting in the area changes.

 223

Begin the program by setting up a directory RABBITS and saving a Delphi
project into it. Use the Object Inspector to Maximize the form, and drag the
dotted grid to nearly fill the screen.

Before running the simulation it will be necessary to specify the initial
population of rabbits (a suitable range is between 10 and 200), and the
percentage of rabbits eaten each month by foxes.

Set up the screen display as shown. Place two small Edit Boxes at the top of
the form with labels alongside - give these the captions 'Initial population
(10-200)' and '% eaten by foxes each month'.

Add two buttons with the captions 'run model' and 'exit', and a List Box in
the middle of the form for text output.

Double-click the 'exit' button to create an event handler:

procedure TForm1.Button2Click(Sender: TObject);
begin
 halt;
end;

 224

The initial population of adult rabbits can be stored as the variable 'adult',
and the percentage eaten by foxes as the variable 'eaten'. Add these to the
Public declarations section:

 public
 { Public declarations }
 adult,eaten:integer;
 end;

The next step is to transfer the input value from the Edit Box to the variable
'adult'. Double-click the Edit Box to produce an event handler and add the
lines:

procedure TForm1.Edit1Change(Sender: TObject);
begin
 if edit1.text='' then
 adult:=0
 else
 adult:=strtoint(edit1.text);
end;

Produce a similar event handler for the '% eaten' edit box:

procedure TForm1.Edit2Change(Sender: TObject);
begin
 if edit2.text='' then
 eaten:=0
 else
 eaten:=strtoint(edit2.text);
end;

We can now turn our attention to the calculations to show changes in rabbit
population over a period of time - five years would be suitable. A flowchart
for the model is given on the next page. During each month of the
simulation the stages in the calculation are:

1. Calculate the number of newborn rabbits this month
2. Subtract the rabbits killed by foxes
3. Subtract the rabbits dying from other causes
4. IF it is a winter month THEN subtract the rabbits dying from starvation
5. Increase the ages of rabbits by 1 month

Each of these steps can be written as a separate procedure, called from the
event handler for the 'run model' button. We will discuss the processing
carried out by each of the procedures in detail later, but first we must set up
the event handler.

 225

start

subtract rabbits killed by foxes

generate a random number to decide
 the number of baby rabbits born

enter % eaten by foxes

find number of breeding females

another
female?

yes

no

select next female

is
it a winter
 month?

yes

no

subtract deaths by starvation

enter the initial population

select first female rabbit

subtract rabbits dying from other causes

yes

another
month?

no

 stop

increase ages by 1 month,
and add 3 month old

rabbits to the adult total

display population total

 226

Double-click the 'run model' button and add the lines:

procedure TForm1.Button1Click(Sender: TObject);
var
 month:integer;
begin
 initialise;
 for month:=1 to 60 do
 begin
 births;
 foxdeaths;
 otherdeaths;
 if (month mod 12) <=3 then
 winterdeaths;
 older;
 end;
end;

This event handler will respond to the 'run model' button by:
• carrying out a procedure 'initialise' to set all variables to the correct

values before the simulation starts
• operating a loop which repeats 60 times for each month of a five year

simulation period
• carrying out a procedure 'births ' to calculate the number of newborn

rabbits in the current month
• carrying out a procedure 'foxdeaths' to subtract the number of rabbits

eaten by foxes in the current month
• carrying out a procedure 'otherdeaths' to subtract the number of rabbits

dying from other causes in the current month
• checking whether it is a winter month - if so, it will carry out a procedure

'winterdeaths' to subtract the number of rabbits dying from starvation.
• carrying out a procedure 'older' to increase the age of all baby rabbits by

one month - it is necessary to know when rabbits reach an age of three
months because they then join the breeding population.

Let us examine in detail the line which checks whether it is a winter month:
if (month mod 12) <=3 then
 winterdeaths;

The MOD function gives the remainder when division takes place, for
example:

 24 mod 5 = 4
because there is a remainder of 4 when 24 is divided by 5. Similarly:

 30 mod 5 = 0
since there is no remainder in this case. 5 divides exactly into 30.

 227

We will take the four winter months when the rabbits are most at risk from
starvation to be: January, February, March and December.

• In the first year of the simulation, these will be months 1, 2, 3 and 12
• In the second year they will be months 13, 14, 15 and 24
• In the third year they will be months 25, 26, 27 and 36
 and so on...

Notice that all these numbers give a remainder of 3 or less when divided by
12. For all other months, the remainder is greater than 3. This useful
observation allows us to use the formula:
 (month mod 12) <=3
to detect if a particular month number represents a winter month.

Go to the type section at the top of the program and add our procedures to
the list:

 procedure Button2Click(Sender: TObject);
 procedure Edit1Change(Sender: TObject);
 procedure Edit2Change(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 procedure initialise;
 procedure births;
 procedure foxdeaths;
 procedure otherdeaths;
 procedure winterdeaths;
 procedure older;
 private
 { Private declarations }

We can now set up the procedure blocks. It is helpful to include comment
lines to indicate the purpose of each procedure. Put the procedure blocks at
the end of the program, just above the final 'end.' line:

procedure TForm1.initialise;
begin
 {set the variables before simulation starts}
end;

procedure TForm1.births;
begin
 {calculate newborn rabbits in the current
 month}
end;

 228

procedure TForm1.foxdeaths;
begin
 {subtract rabbits eaten by foxes in the
 current month}
end;
procedure TForm1.otherdeaths;
begin
 {subtract rabbits dying from other causes in
 current month}
end;

procedure TForm1.winterdeaths;
begin
 {subtract rabbits dying from starvation in
 a winter month}
end;

procedure TForm1.older;
begin
 {increase the age of baby rabbits by one
 month}
end;

end.

We can now start work on the individual procedures. The first to consider is
'initialise'.

At the start of the program the user will input the initial number of adult
rabbits. It will also be necessary to record the numbers of newborn rabbits,
1 month old and 2 month old rabbits which are not yet part of the breeding
population. Add lines to the 'initialise ' procedure to set these to zero before
the simulation begins:

procedure TForm1.initialise;
begin
 {set the variables before simulation starts}
 newborn:=0;
 month1:=0;
 month2:=0;
end;

Add these variables to the Public declarations:

public
 { Public declarations }
 adult ,newborn,month1,month2 :integer;
 eaten:integer;

 229

The next procedure is 'births '. This should begin by finding the number of
breeding females - we can take this to be half the number of adults, rounded
to the nearest whole rabbit!

For each female, we need to find the number of baby rabbits born that month
according to the probabilities given in the question. A random number and
number line technique similar to the electricity simulation can again be used:

A number line from 0 to 100 is divided up in proportion to the probabilities
of the different size of litter. A random number in the range 0-100 is then
generated by the computer, and the position on the number line determines
the litter size. For example, a random number of 78 gives a litter of 4 baby
rabbits:

Add lines to the 'births ' procedure to calculate the number of newborn
rabbits:

procedure TForm1.births;
var
 breeding,i,n:integer;
begin
 {calculate newborn rabbits in the current
 month}
 breeding:=round(adult/2);
 randomize;
 for i:=1 to breeding do
 begin
 n:=random(100);
 if n<10 then
 newborn:=newborn+7;

0 10 30 70 90 100

7 6 5 4 3

size of litter

0 10 30 70 90 100

7 6 5 4 3

size of litter

0.1 0.2 0. 4 0.2 0.1

 230

 if (n>=10) and (n<30) then
 newborn:=newborn+6;
 if (n>=30) and (n<70) then
 newborn:=newborn+5;
 if (n>=70) and (n<90) then
 newborn:=newborn+4;
 if n>=90 then
 newborn:=newborn+3;
 end;
end;

Let's look at how this works...

We calculate the number of breeding females as half the adult population.
 breeding:=round(adult/2);

We then begin a loop which will repeat for each of the breeding females:

for i:=1 to breeding do

To find the litter size for the first female, a random number is produced:
 n:=random(100);

If the random number is less than 10, this represents a litter of 7 baby rabbits
as shown on the number line above. This number is added to the total of
baby rabbits born so far this month:
 if n<10 then
 newborn:=newborn+7;

Similar lines of program handle the other number ranges. For example, a
random number between 10 and 30 would indicate a litter of 6 baby rabbits:
 if (n>=10) and (n<30) then
 newborn:=newborn+6;

The next procedure is 'foxdeaths'. This will reduce the numbers of rabbits in
each age category according to the percentage eaten by foxes. Add the
lines:

procedure TForm1.foxdeaths;
begin
 {subtract rabbits eaten by foxes in the current
 month}
 adult:=adult-round(adult*eaten/100);
 month2:=month2-round(month2*eaten/100);
 month1:=month1-round(month1*eaten/100);
 newborn:=newborn-round(newborn*eaten/100);
end;

 231

The 'otherdeaths' procedure will be similar, but in this case the number of
rabbits in each age category is reduced by one eighth. Add the lines:

procedure TForm1.otherdeaths;
begin
 {subtract rabbits dying from other causes in
 current month}
 adult:=adult-round(adult/8);
 month2:=month2-round(month2/8);
 month1:=month1-round(month1/8);
 newborn:=newborn-round(newborn/8);
end;

The 'winterdeaths' procedure again reduces the number of rabbits in each
age category by one eighth. Edit/Copy/Paste could be used to copy the
lines from 'otherdeaths' into the 'winterdeaths' procedure:

procedure TForm1.winterdeaths;
begin
 {subtract rabbits dying from starvation in
 a winter month}
 adult:=adult-round(adult/8);
 month2:=month2-round(month2/8);
 month1:=month1-round(month1/8);
 newborn:=newborn-round(newborn/8);
end;

The fial stage is to write the 'older' procedure which promotes each group of
rabbits to the next age category:

• 2 month old rabbits join the adult breeding population
• 1 month old rabbits become 2 months old
• newborn rabbits become 1 month old.

Add the lines of program to do this:

procedure TForm1.older;
begin
 {increase the age of baby rabbits by one month}
 adult:=adult+month2;
 month2:=month1;
 month1:=newborn;
end;

The processing procedures for the simulation are now completed, but there
will not yet be any screen output when the program runs. We can add lines
to the 'run model' button click procedure to write comments in the List Box
in a similar way to the House heating costs program.

 232

Add lines to the 'run model' button click procedure:

procedure TForm1.Button1Click(Sender: TObject);
var
 month ,total :integer;
 textline:string;
begin
 initialise;
 listbox1.clear;
 adult:=strtoint(edit1.text);
 for month:=1 to 60 do
 begin
 births;
 foxdeaths;
 otherdeaths;
 if (month mod 12) <=3 then
 winterdeaths;
 textline:='Month '+inttostr(month);
 listbox1.items.add(textline);
 total:=adult+month2+month1+newborn;
 if total<0 then
 month:=60
 else
 begin
 textline:='Total population: ' +
 inttostr(total);
 listbox1.items.add(textline);
 end;
 listbox1.items.add(' ');
 older;
 end;
end;

The purpose of the lines:

 listbox1.clear;
 adult:=strtoint(edit1.text);

is to blank out the List Box and ensure that a correct starting value for 'adult'
is obtained from the Edit Box. These lines are needed if the simulation is run
more than once.

The number of the current month is displayed by the instructions:

 textline:='Month '+inttostr(month);
 listbox1.items.add(textline);

 233

The total number of rabbits is found by adding the different age groups:

total:=adult+month2+month1+newborn;

It is possible that the population will grow so large that the total cannot be
displayed correctly as an integer value - the integer goes out of range and
takes on an incorrect negative value. The purpose of the next IF.. condition
is to stop the simulation if this happens:

 if total<0 then
 month:=60
 else
 begin
 textline:='Total population: ' + inttostr(total);
 listbox1.items.add(textline);
 end;

By setting the loop counter 'month' to 60, the computer will think that all
60 months of the simulation have been completed and the loop will end.

If the population total has stayed in range, the value will be displayed in the
List Box.

The time has now come to compile and try out the simulation. Run the
program with an initial population of 100 adult rabbits, and set the
percentage eaten by foxes to 50%. Press the 'run model' button:

 234

In this run of the model the population decreased, becoming stable in month
27 with only 8 rabbits surviving.

Run the model again with the same starting population of 100 adults, but this
time set the percentage eaten to 40%:

This time the population increased, reaching over 23,000 by month 37 when
the total went out of range and the loop stopped.

Keep the starting population at 100 and vary the percentage eaten by foxes
until you find a % value which keeps the population as stable and close to
100 as possible.

Although the model is giving correct results, these are difficult to interpret in
text form - as in the case of the electricity simulation, a graph would be
better.

Exit from the program and go back to the Delphi editing screen. Delete the
List Box from the Form and replace it with an Image Box. Use the Object
Inspector to set the Width to 640 and the Height to 480.

Return to the program listing and delete all lines from the 'run model' button
click procedure which begin: listbox1. . . - the listbox has been deleted, so
these would cause an error.
NOTE: An easy way to do this is to use the Find option on the Search
menu at the top of the Delphi editing screen.

 235

Add two new procedures: 'axes' which will plot the axes for a linegraph, and
'plotpoint ' which will draw the graph line. After deleting the instructions
which are no longer needed, the 'run model' button click procedure
becomes:

procedure TForm1.Button1Click(Sender: TObject);
var
 month,total:integer;
begin
 initialise;
 axes;
 adult:=strtoint(edit1.text);
 for month:=1 to 60 do
 begin
 births;
 foxdeaths;
 otherdeaths;
 if (month mod 12) <=3 then
 winterdeaths;
 total:=adult+month2+month1+newborn;
 if total<0 then
 month:=60
 else
 plotpoint(month,total);
 older;
 end;
end;

Add the new procedures to the list under the type heading at the top of the
program:

 procedure winterdeaths;
 procedure older;
 procedure axes;
 procedure plotpoint(month,total:integer);

Notice that the heading for the procedure has the two variables 'month' and
'total' shown in brackets:

procedure TForm1.plotpoint(month,total:integer);

This is done whenever a procedure needs to make use of variables from
elsewhere in the program which have not been listed under the Public
declarations heading. The variables shown in a procedure heading are
known as 'input parameters'. This topic will be discussed in detail in a later
chapter of the course.

 236

Put in the procedure blocks:

procedure TForm1.axes;
begin
 {draw the graph axes}
end;

procedure TForm1.plotpoint(month,total:integer);
begin
 {plot a point for the graph line}
end;

end.

We will scale the graph so that the 60 months of the simulation are shown
along the horizontal axis, and the vertical axis gives a range from 0 - 600
rabbits. The scale factors will be: 1 screen unit vertically = 2 rabbits, and 8
screen units horizontally = 1 month.

Add the lines of program to draw the axes and add the graduations:

100 580

100

400

480

0 640

600

 0

300 screen units = 600 rabbits

480 screen units = 60 months

 1 screen unit = 2 rabbits

 8 screen units = 1 month

 237

procedure TForm1.axes;
var
 x,y:integer;
 textline:string;
begin
 {draw the graph axes}
 image1.canvas.brush.color:=clWhite;
 image1.canvas.rectangle(0,0,640,480);
 image1.canvas.moveto(100,100);
 image1.canvas.lineto(100,400);
 image1.canvas.lineto(580,400);
 for y:=0 to 6 do
 begin
 image1.canvas.moveto(100,400-y*50);
 image1.canvas.lineto(90,400-y*50);
 textline:=inttostr(y*100);
 image1.canvas.textout(50,393-y*50,textline);
 end;
 image1.canvas.textout(30,60,'population');

 238

 for x:=0 to 30 do
 begin
 image1.canvas.moveto(100+x*16,400);
 image1.canvas.lineto(100+x*16,410);
 if x mod 5 = 0 then
 begin
 textline:=inttostr(x*2);
 image1.canvas.textout(92+x*16,412,textline);
 end;
 end;
 image1.canvas.textout(320,440,'month');
end;

The loop beginning:

for y:=0 to 6 do
draws graduation lines on the vertical axis and numbers these 0, 100, 200 ...

The loop counter variable y which runs from 0 to 6 is multiplied by 100 to
produce the figures 0 - 600 for the graduations:

 textline:=inttostr(y*100);
 image1.canvas.textout(50,393-y*50,textline);

The second loop beginning:

 for x:=0 to 30 do

puts graduation lines along the horizontal axis at 2 month intervals. We use
a MOD function:

 if x mod 5 = 0 then
 begin
 textline:=inttostr(x*2);
 image1.canvas.textout(92+x*16,412,textline);
 end;

to control the numbers which are displayed. The IF... condition only
operates if the loop counter x divides exactly by 5. That is in the cases
when:
 x = 0, 5, 10, 15, etc.

These figures are multiplied by 2 then written on the screen as the month
numbers 0, 10, 20, 30

We now only need to finish the 'plotpoint ' procedure. Add the lines of
program:

 239

procedure TForm1.plotpoint(month,total:integer);
begin
 {plot a point for the graph line}
 if month=1 then
 image1.canvas.moveto(100+month*8,
 400-round(total/2))
 else
 image1.canvas.lineto(100+month*8,
 400-round(total/2));
end;

 The procedure contains an IF.. ELSE.. conditional block:

 if month=1 then
 image1.canvas.moveto(100+month*8,
 400-round(total/2))
 else
 image1.canvas.lineto(100+month*8,
 400-round(total/2));

For month 1, the computer needs to move to the starting point of the graph
without drawing a line. For each of the other months a line is drawn to the
current graph point.

 240

Compile and run the program. Enter 100 as the initial population, and 41%
eaten by foxes. Press the 'run model' button and a graph similar to the one
below should be drawn:

The graph line is generally rising, indicating a long term increase in the rabbit
population. The 'saw tooth' pattern is due to the increased death rate in the
winter months which temporarily reduces the population.

Now try 48% eaten by foxes:

The pattern changes. The population now shows a decline to a low number
of rabbits surviving.

Experiment with different percentages eaten to find a value which keeps the
population as stable and close to 100 as possible.

Now try varying the initial population in the range 10 - 200 rabbits. Does
this affect the percentage eaten by foxes for a stable population?

