
 10

TWO

Graphics

In chapter one we saw how a bitmap image can be displayed in a program.
This is not the only way of producing graphics in Delphi, and in this section
we will look at two other methods:

Using the shape component

Simple diagrams made up of geometrical shapes can be designed directly in
Delphi using the shape component from the ADDITIONAL component
menu:

To try out this technique we will produce a Delphi screen display to illustrate
the layout of a nuclear power station:

Begin by creating a sub-directory in your work area; call this NUCLEAR.

shape

 11

Load Delphi and immediately save the new project into the NUCLEAR sub-
directory. Accept the file names unit1.pas and project1.dpr offered by the
system. Try to get into the habit of saving your project at regular intervals as
you are developing a program - if anything goes wrong, you will have a
recent version of the project which can be reloaded.

Using the object inspector, set the WindowState to maximized. Run the
program to check that a blank grey screen in produced. Return to the Delphi
editor by clicking the cross in the top right hand corner of the screen.

Use the mouse to drag the edges of the grey dotted grid so that the Form
Window nearly fills the screen. Select the shape component from the
ADDITIONAL menu, and use the mouse to position a large white rectangle
so that it nearly fills the Form Window grid - just leave a narrow grey border
showing.

This rectangle is the work area in which we will build up the diagram of the
nuclear power station. Begin by selecting the shape component and
positioning a square for the reactor outer casing:

 12

The diagram will look best if it is produced in colour. Make sure that the
square is selected by clicking on it with the mouse, then press the ENTER
key to display the Object Inspector window.

Double-click on Brush to display the sub-properties Color and Style. Now
double-click in the right-hand column alongside the word Color and the
colour selection window will open. This provides a range of basic colours,
and we might select grey as suitable for the concrete shielding of the nuclear
reactor. Notice that there is an option to set other colours not in the
standard palette; this is done by moving a cross around on the colour chart
to specify the colour position in the spectrum, and then moving the pointer
on the vertical scale to set the lightness/darkness required.

Once a suitable colour has been chosen, click OK to return to the Form grid.
The square should now have the required colour fill.

Next we will add the circle to represent the reactor vessel. Choose the
shape component and use the mouse to create a square in the position where
the circle is to fit.

 13

Bring the Object
Inspector onto the screen
and find the Shape
property. Click in the
right-hand column to
display a small arrow for
a drop down menu.

Click the arrow and
select Circle from the list
of shapes offered. The
square displayed on the
Form grid should now
change to a circle shape.

Change the Brush
property to a suitable
colour to represent the carbon dioxide coolant in the reactor vessel.

We can continue to add shapes to the diagram. Put four narrow rectangles
inside the reactor vessel to represent the fuel rods, and colour these red.
You may find it easiest to use the Edit/Copy/Paste facility to do this.
Rectangles can be used to represent the turbine and generator.

A problem arises when we try to represent the
pipework within the boiler using rectangles.
Shapes normally have an outline, in black
unless some other colour is selected, but these
will spoil the continuity of the pipes.

From the Object Inspector, find the Pen
property. Double-click to produce a list of
sub-properties. Click alongside Style to
obtain a drop down menu then select Clear.
The shape will be displayed as a coloured bar
without any outline. Again, you may find the
Edit/Copy/Paste a useful way to duplicate
shapes, then stretch and drag them into
position.

Once the digram shapes are completed, captions can be added using the
Label component:

label

 14

Select Label, then use the mouse to position the label box on the diagram. Press
ENTER to bring up the Object Inspector window and type the required text into
the Caption property. You will need to set the Color property to White to
produce a white background for the text.

The font, size and colour for the text can be selected by double-clicking in the
right-hand column of the Font property. A selection window will be displayed:

Complete the labelling for the diagram:

 15

As a final stage you might add arrows to the diagram to show the flow of carbon
dioxide and water. Two bitmap images have been provided:

LEFT.BMP RIGHT.BMP

These can be positioned on the diagram using the Image component in a
similar way to the camera picture in chapter one, and can be scaled to the
required size by setting the Stretch property to true.

Save the completed project in the sub-directory NUCLEAR.

Run time graphics

The graphical techniques we have used so far have involved setting up
screen displays on a Form grid to display bitmap images or shapes. These
are known as design time graphics because they are created while the
program is at the design stage.

Sometimes, however, it is necessary for graphics to be drawn while the
program is running - for example in response to the user moving the mouse
around the screen in a computer aided design package. In this section we
will look at ways of producing run time graphics. The technique involves
actual programming, rather than just using the component toolbox.

As an example we will write a program to draw a picture of a house. Set up
a new sub-directory for the project and name this HOUSE. Start a new
Delphi project and immediately save it into the subdirectory.

Go to the Object Inspector for the Form, and set WindowState to
Maximized. Use the mouse to drag the Form grid larger to almost fill the
screen.

Add an Image box from the ADDITIONAL component menu. Drag the
box until it nearly fills the grid.

When we produce the graphics at run time,
lines and other shapes will be positioned on
the screen using a coordinate system within
the image box. We therefore need to set the
exact measurements of the image box we are
using. Select the image box by clicking the
mouse within the frame, then press ENTER
to bring up the Object Inspector window.
Set the Height property to 480:

 16

Now set the Width property to 640 in a
similar way.

You may find that the image box has
changed size and you will need to recenter it
on the grid.

The house picture we are going to create is drawn out on graph paper on the
next page. The size of the grid - 640 units wide and 480 units high -
corresponds with the size we set for the image box. Notice that, unlike
graphs in mathematics, the vertical scale is numbered downwards from the
top of the sheet.

We will begin by putting a button component onto the screen. Pressing this
button while the program is running should make the program draw the
house. Select the Button component and use the mouse to position a button
at the edge of the image box. Use the Object Inspector to set the Caption
property to read 'draw house':

Double-click the mouse on the button to open the Program Unit window and
create an event handler procedure called Button1Click.

Add the following line of program between the begin and end commands:
 image1.canvas.rectangle(0,0,640,480);
The purpose of this is to draw a white rectangle with corners at coordinates
(0 across, 0 down) and (640 across, 480 down).

Compile and run the program. Press the 'draw house' button to check that
this works correctly.

 17

 18

We can now begin to draw the house. Use the 'Toggle form/unit' short cut
button to bring the program unit window to the front, then add two more
lines to the ButtonClick procedure so that it becomes:

procedure TForm1.Button1Click(Sender: TObject);
begin
 image1.canvas.rectangle(0,0,640,480);
 image1.canvas.moveto(50,400);
 image1.canvas.lineto(600,400);
end;

This should draw the base line for the house. Run the program to check that
it works:
• Using the coordinate system, the moveto command has told the program

to go to a point (50 across, 400 down).
• The lineto command has told the program to draw a line from here to a

point (600 across, 400 down).
Notice that the across coordinate is always given first, followed by the down
coordinate. Check these numbers on the house drawing on the graph paper.

We might now draw in the garage. This can be done with another rectangle
command. Add this line to the procedure:

procedure TForm1.Button1Click(Sender: TObject);
begin
 image1.canvas.rectangle(0,0,640,480);
 image1.canvas.moveto(50,400);
 image1.canvas.lineto(600,400);
 image1.canvas.rectangle(450,280,601,401);
end;

400

50 600

 19

The rectangle which the program will
draw has its top left corner at the point
(450 across, 280 down). The bottom
right corner stops one unit short of the
coordinates given, so the actual
position of the bottom right corner will
be (600 across, 400 down) as required.
When using the rectangle command,
always remember to add one unit to
the coordinates for the bottom right
corner.

Try to complete the house picture using moveto, lineto and rectangle
commands. A few more lines have been added below to help you get
started. You may find it easiest to use Edit/Copy/Paste to replicate lines of
program:

procedure TForm1.Button1Click(Sender: TObject);
begin
 image1.canvas.rectangle(0,0,640,480);
 image1.canvas.moveto(50,400);
 image1.canvas.lineto(600,400);
 image1.canvas.rectangle(450,280,601,401);
 image1.canvas.rectangle(450,270,611,281);
 image1.canvas.rectangle(470,300,581,401);
 image1.canvas.rectangle(350,310,361,401);
 image1.canvas.moveto(50,400);
 image1.canvas.lineto(50,200);
 image1.canvas.lineto(250,100);
 image1.canvas.lineto(450,200);
 image1.canvas.lineto(450,400);
end;

Once the outline drawing is completed, we might think about adding some
colour. A convenient way to do this is to use the floodfill command. At the
bottom of the procedure, just above the end command, add the lines:

image1.canvas.brush.color:=clRed;
image1.canvas.floodfill(500,350,clBlack,fsBorder);

This will colour the garage door red:
• The brush.color command sets the fill colour to be red
• The floodfill command starts at the point (500 across, 350 down) and

spreads colour in all directions until a black border is reached. You can
use any coordinates which are within the area to be flood filled.

Other colours are available. The colour codes are listed below.

400

450 600

280

 20

Standard colour codes for use with the brush.color command:

clBlack clMaroon
clGreen clOlive
clNavy clPurple
clTeal clGray
clSilver clRed
clLime clBlue
clFuchsia clAqua
clWhite

 21

SUMMARY

In this chapter you have:
• Used the shape component to produce rectangles and a circle
• Selected the fill colour for the shapes
• Produced shapes with and without outlines
• Used the label component to display text
• Selected the font and size for the label text
• Seen how run time graphics make use of a screen coordinate system like

graph paper
• Set up an image box with specified width and height coordinates
• Used moveto, lineto and rectangle commands to produce graphics
• Used brush.color and floodfill commands to fill areas of the picture with

colour

