An Integrated Meteorological /Hydrological Model for the Mawddach Catchment, North Wales

by

Graham Hall

Bachelor of Science, University of Wales, Aberystwyth Master of Mathematics, The Open University

Volume 1

A thesis submitted for the degree of Doctor of Philosophy

Centre for Arid Zone Studies School of the Environment and Natural Resources Bangor University

April, 2008

Abstract

This project makes a study of meteorological and hydrological processes operating in the Mawddach river catchment of North Wales, with the objectives of recommending catchment management options to reduce the severity of flooding and to produce a design for a high resolution flood forecasting model for the catchment.

An array of rain gauges installed across the catchment has allowed the detailed mapping of rainfall distributions. Two patterns are identified, with axes of high rainfall running NW-SE and N-S respectively. Within these zones, the locations of rainfall maxima do not necessarily correspond with the highest altitude. The approach direction of weather systems and the funnelling of air flows along deep valleys appear to control rainfall distribution.

A series of flood events are examined, particularly the convective squall line storm of 3 July 2001 and the period of intense frontal rainfall of 3-4 February 2004. Modelling of rainfall is carried out using the MM5 meteorological model. It is found that frontal rainfall can be forecast to a high degree of accuracy. Convective thunderstorm events are less predictable, and different convective physics schemes within the MM5 package had differing degrees of success in forecasting the July 2001 Mawddach storm.

The catchment is an area of hard, low permeability Palaeozoic rocks. Thick deposits of glacial and periglacial materials are locally present, particularly in valleys. Experiments to monitor hillslope throughflow and runoff show that these superficial deposits play a crucial role in controlling the antecedent conditions necessary for saturation-excess flood events.

Deep blanket peat is found at a number of upland sites in the catchment. Watertable monitoring indicates that older peat has a low water storage capacity, with saturation possible within a few hours of heavy rainfall. Areas of young *Sphagnum* peat can act as regulating reservoirs for flood water, and should be conserved.

Field monitoring of river bed temperatures shows that resurgence of groundwater can occur in the deep river valleys of Coed y Brenin during storm events. However, resurgence occurs after the flood peak has passed and is not thought to influence the severity of flooding.

Flood scenarios for the town of Dolgellau are investigated, including the effects of continued gravel deposition in the River Wnion. Gravel supply should be controlled through planting of native broadleaf woodland on riverbanks of (peri)glacial materials. A flood reduction scheme is proposed, with establishment of wet woodland and creation of a flood interception basin in the lower Wnion valley.

Field monitoring of river and tidal flows at the head of the Mawddach estuary indicates no additive effect of river flood and tidal peaks. Flooding at the head of the estuary is generally caused by river flows. Further reclamation of salt marsh could worsen upstream flooding.

A new hillslope model has been written which allows for changing antecedent soil moisture conditions. The model generates a soil distribution based on the HOST (hydrology of soil types) scheme. A flood forecasting system is developed by combining the hillslope model with MM5 and existing river routing and floodplain modelling components. The system operates by a combination of parallel and distributed processing, to produce forecasts within an operationally useful timescale.

Contents

Acknowledgements	viii
Mawddach-Wnion catchment location map	Х
Publications related to the project	xi
List of figures	xii
List of tables	XXV

1. Introduction

1.1 Objectives of the study	2
Current practice in flood forecasting	3
Synopsis of chapters	6
Flooding in the Mawddach and Wnion catchments	11
Hypotheses	24
1.2 The Study Area	25
Geology	25
Geomorphology	41
Soils	60
Vegetation	71
Industrial development	94
Summary	103

2. Meteorology

2.1 Meteorological Principles	106
Theories of midlatitude cyclone structure	114
Orographic effects on rainfall	126
Convective storms	132
Summary	138
2.2 Rainfall in the Mawddach catchment	139
Rainfall monitoring	139
Classification of rainfall patterns	142
The extended rainfall period of February 2004	156
July 2001 exceptional rainfall event	163
Summary	168
2.3 Meteorological modelling	169
Using atmospheric soundings	175
Summary	183

	104
2.4 The MM5 modelling system	184
Configuring and running the MM5 model	207
Frontal rainfall events	209
Statistical analysis	225
Rainfall radar	231
Optimisation of MM5 models using a neural network Structure of frontal events	236 245
	243 251
Squall line convection	251
Summary	250
3. Catchment Hydrology	
3.1 Hydrological modelling systems	257
Summary	273
3.2 Hillslope hydrology	274
Subcatchments and river reaches	281
River channel surveying	283
Hydrograph recording	286
Soil shallow stormflow	309
Watershed Modelling System	314
Results of model runs	326
Summary	344
3.3 Sediment movement	346
Sediment accumulation around Dolgellau	346
Approaches to sediment modelling	351
GSTARS sediment models for the Mawddach catchment	365
Summary	385
3.4 River and floodplain processes	386
Dolgellau flood modelling	389
Effects of floodplain forestry on water flow	408
Calibration of floodplain forestry models	411
Simulation of floodplain forestry schemes for the Wnion valley	423
River-groundwater interactions	443
Afon Wen groundwater model	449

467

Summary

3.5 Peat blanket bogs	469
Hydrology of blanket bogs	469
Blanket peat in the Mawddach catchment	475
Waen y Griafolen case study	479
Waen y Griafolen groundwater model	500
Summary	510
3.6 The Mawddach estuary	511
Tidal flows in the estuary	529
Estuary hydrological model	540
Upper basin model	550
Sediment modelling	557
Summary	561
4. Integrated catchment modelling	
4.1 Integrated meteorological-hydrological models	563
Requirements for a Mawddach integrated model	570
Mathematical basis for the hillslope model	572
Summary	580
4.2 The Mawddach hillslope model	581
Creating an initialisation file	595
Running the hillslope program	597
Summary	600
4.3 Validation of the hillslope model	601
Hilslope runoff experiments	601
Channel routing	615
Waen y Griafolen blanket bog model	619
Summary	623
4.4 Results of runs of the integrated model	624
Configuration for distributed processing	624
Frontal storms of February 2004	628
Convective storm of July 2001	636
Summary	639
-	

5. Discussion

5.1 Dev	velopment of a flood forecasting system	641
5.2 Me	teorology	645
	Meteorological modelling	655
	Future developments in meteorological modelling	657
5.3 Hy	drology	661
	Hillslope runoff	663
	River flows	667
	Groundwater effects	670
	Peat blanket bogs	672
	Floodplain overbank discharge	674
	River sediment	676
1	Tidal estuary	678
5.4 Ca	tchment modelling	680
6. Conclusions	s and Recommendations	684
References		692
Appendices		710
	A: User guide for the Hillslope Model	711
	B: Subcatchment descriptions	732
	C: Hydrograph site calibration	747
	D: Output from the GSTARS sediment model	761
	E: Storm Rainfall Maps	776

Declaration

This work has not been previously accepted in substance for any degree and is not being concurrently submitted in candidature of any degree. This thesis is the result of my own investigations, except where otherwise stated. Other sources are acknowledged by references in the text. A bibliography is appended.

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.

Siglieu	Signed	(candidate)
---------	--------	-------------

Date

Signed (supervisor)

Date

Acknowledgements

It would have been impossible to carry out this project without the help and support of many people, and in the course of the work I have made many friends – to all I offer my sincere gratitude.

I must first thank the Principal of Coleg Meirion-Dwyfor, Dolgellau, not only for allowing me to undertake the project whilst employed as a lecturer in the College but also for providing financial sponsorship. I am grateful to the staff of Coleg Meirion-Dwyfor for their interest and encouragement, and especially to Ieuan Edwards, Bryn Williams and Tony Rees for making the practical arrangements which allowed me to attend conferences and other activities related to the project. I gratefully acknowledge additional financial support from the Institute of Mathematics and its Applications.

I have been especially fortunate in receiving help with field data collection from excellent groups of students, for whom even the carrying of equipment to remote mountain locations in adverse weather conditions failed to dampen their enthusiasm: Jo Barton, Feysal Awissa, Jerome O'Connell and Simon Smith of the Bangor University MSc Water Resources course, and Osian Edwards, Richard Shaw, Sarah Johnson and Owain Williams of Coleg Meirion-Dwyfor.

Landowners within the Mawddach catchment have been generous in granting access to field locations and permission to install meteorological and hydrological monitoring equipment. I am especially indebted to: Aled Thomas of Forest Enterprise for allowing the use of sites in Coed y Brenin; Archie Jones, Alltlwyd, for access to Waen y Griafolen; and Chris Dixon, Tir Penrhos, for allowing the construction of a hillslope throughflow monitoring site.

I am grateful to the organisations who have made additional data available for the project: Environment Agency, Bangor, for providing hydrograph records for Tyddyn Gwladys and Dolgellau; Proudman Oceanographic Laboratory for Barmouth tidal data; CEH Wallingford for the digital elevation model for the catchment; and Maentwrog Hydroelectric Power Station for historical rainfall records and data for water flows in the Ardudwy leat system. The project could not have been carried out without a range of computing applications. I owe a debt of gratitude to many software authors, some of whom I have had the pleasure of meeting but others who remain as legends, for their great technical skill and creativity. I would particularly thank the groups responsible for developing the software packages: MM5, GSTARS, MODFLOW, River2D, Mapmaker and SAGA GIS. The Portland Group were generous in allowing free use of the FORTRAN compiler.

I have been fortunate in receiving skilled technical support at various stages of the project, and gratefully acknowledge the important contributions of: Malcolm Murgatroyd, Dolgellau, for the construction of water depth monitoring equipment; Lea Anthony, Coleg Meirion-Dwyfor, for use of the College computer network; and Ade Fewings, Bangor University, for use of the Altix minicomputer.

Professor Tony Jones and Dr Tom Rippeth examined an earlier version of the thesis and made valuable suggestions for its improvement. May I extend my thanks for carrying out this task so constructively.

I have left until last to mention the two people who have made the greatest contributions to the project: my research supervisor Roger Cratchley, and my wife Margaret:

It has been the greatest of pleasure working with Roger, a scientist with extensive interests, knowledge and practical experience spanning the range of environmental sciences. I thank him for his abiding friendship and wise counsel.

Margaret has been a resolute partner in the project, willingly allowing fieldwork to take the place of more normal family activities. She has on many occasions waded in streams, dug holes and recorded data, as well as providing transport and food for the fieldwork team. Many of the photographs included in this work are hers.

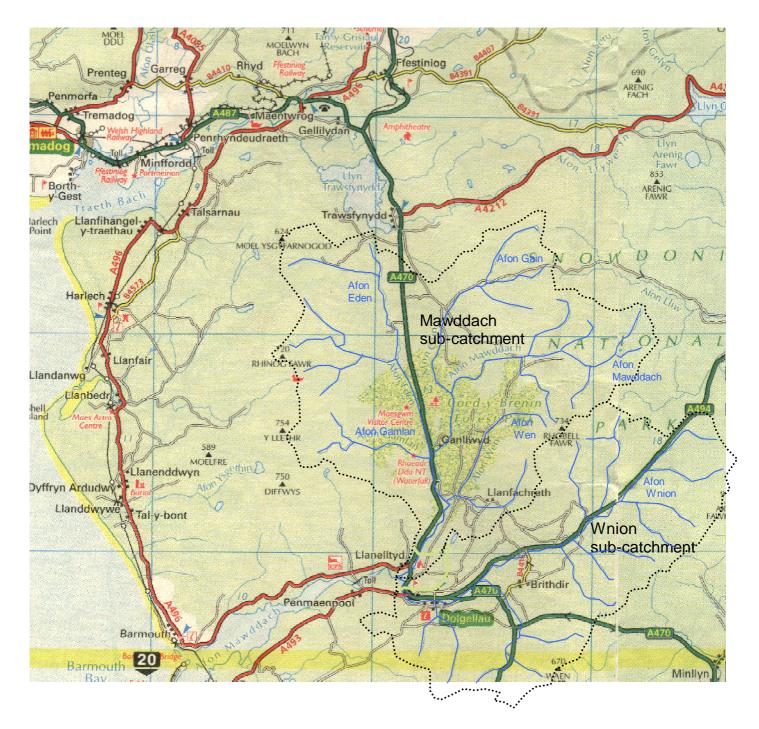


Figure i. Mawddach-Wnion catchment location map

Publications related to the project:

- Hall G. and Cratchley R., 2005. Modelling frontal and convective rainfall distributions over North Wales. Proceedings of the 2005 WRF/MM5 User's Workshop, National Centre for Atmospheric Research, Boulder, Colorado.
- Hall G. and Cratchley R., 2005. The role of forestry in flood management in a Welsh upland catchment. Proceedings of the 45th Congress of the European Regional Science Association, Amsterdam.
- Hall G. and Cratchley R., 2006. Sediment erosion, transport and sedimentation during the July 2001 Mawddach extreme flood event. In: Sediment Dynamics and the Hydromorphology of Fluvial Systems. IAHS publication 306.
- Hall G. and Cratchley R., 2006. Coupling of MODFLOW with the MM5 mesoscale meteorological model for real-time input of high resolution rainfall events in a mountainous area. In: Managing Groundwater Systems. International Groundwater Modelling Center, Colorado.
- Hall G. and Cratchley R., 2006. A hydrological study of Waen y Griafolen blanket bog, North Wales. Proc. International Conf. on Hydro-ecology. Carlsbad, Czech Republic.
- Hall G. and Cratchley R., 2006. Hydrological Modelling Of Flood Events Around The Mawddach Estuary, North Wales. Proc. 2nd International Conf. on Estuaries and Coasts, Guangzhou, China.
- Hall G. and Cratchley R., 2007. Mechanisms of flooding in the Mawddach catchment. In:Hydrology and Management of Water Resources in Celtic Countries. IAHS publication 310 (in press)
- Hall G., Cratchley R. and Johnson S., 2006. The use of SAGA-GIS in an integrated meteorological/hydrological model for the Mawddach river catchment, North Wales. Gottinger Geographische Abhandlungen, 115.
- Hall G., Cratchley R. and Johnson S., 2006. Integrated meteorological/hydrological modelling of the Mawddach river catchment, North Wales. Proc. British Applied Mathematics Colloquium, Keele.

List of figures

Figure	Page
i. Mawddach-Wnion catchment location map	х
1.1: Location of the Mawddach catchment	2
1.2: Proposed modelling components for the integrated Mawddach flood prediction system	5
1.3: Dolgellau in the mid 1800's. The Wnion floodplain is outlined.	11
1.4: Disused railway bridge at the tidal limit of the River Wnion, Dolgellau.	
This is likely to be the site of the 1880 bridge failure.	12
1.5: Flooding in Bridge Street, Dolgellau, September 19, 1922	12
1.6: Damage to Bont Fawr, Dolgellau, September 19, 1922.	13
1.7: Dolgellau flood of December 12, 1964	13
1.8: Flood defence wall alongside Bont Fawr. Flood event of 4 February 2004.	14
1.9: Land reclamation at the head of the Mawddach estuary. Earth embankments and	14
drainage ditches are marked	14
1.10: The former railway station at Arthog	15
1.11: Illustration of variations in discharge on the River Gain at Pistyll Cain. A dry summer month, and river in spate during the February 2004 flood.	16
1.12: Infiltration-excess overland flow.July 2001 flood event, Cwm Prysor.	10
1.13: Flood water which disrupted traffic, Cwm Prysor. July 2001 flood.	17
1.14: Bridge destroyed on the River Gain	18
1.15: Bridge damage at Abergeirw	18
1.16: Forestry road undermined, Coed y Brenin	18
1.17: Bank erosion endangering buildings, Ferndale	18
1.18: Annual rainfall totals: Trawsfynydd	20
1.19: Monthly rainfall totals: Trawsfynydd	20
1.20: Monthly rainfall distribution: Trawsfynydd	20
1.21: Bont Fawr, Dolgellau, after gravel clearance.	22
1.22: Bont Fawr, Dolgellau, showing gravel reaccumulation.	22
1.23: Work in progress to clear gravel from the Bont Fawr area.	22
1.24: Natural riparian woodland alongside the Afon Eiddon, tributary of the Wnion.	23
1.25: Wet woodland alongside the River Wnion at the head of the estuary.	
Photographed during the February 2004 flood event.	23
1.26: Volcanic centres and deep fracture zones related to Ordovician subduction in the Welsh Basin	26
1.27: Geology of the Harlech Dome	26 27
1.27. Geology of the Harleen Dome 1.28: Harleen Dome geological cross sections	27
1.29: Cambrian and lowest Ordovician (Tremadog) succession	20 30
1.30: Features of the Rhinog Grits, near Llyn Pryfed, Rhinog mountains	31
1.31: Vigra Flags member of the Maentwrog formation, Foel Ispri.	32
1.32: Structure of the Rhobell volcanic centre	33
1.33: Outcrop of decomposed diorite with disseminated copper carbonate	
mineralisation. Coed y Brenin porphyry copper deposit, Hermon	34
1.34: Formations within the Aran Volcanic Group	35
1.35: Cefn Hir volcanic mudflow	35
1.36: Pared yr Ychain grey sandstones and mudstones	35
1.37: Dolerite dyke intruded through Upper Cambrian sediments, Moel Oernant	36
1.38: Evolution of a complex fracture zone by successive reactivation	39
1.39: Afon Wen fracture zone, Hermon	40
1.40: View from Hyddgen across the Plynlimon mountain range, mid-Wales	41
1.41: Erosion surfaces above the town of Dolgellau	42

1.4	2: Erosion surfaces above the Mawddach estuary	44
1.4	3: Long profiles of the Afon Mawddach and Afon Gain	45
1.4	4: Main ice flow directions in North Wales	46
1.4	5: The lower Mawddach valley	47
1.4	5: The lower Wnion valley	47
	7: Llyn Aran	47
1.4	8: Allt Lwyd valley, looking SW. Site of the resistivity sounding is marked	49
1.4	9: Site of conjectured post-glacial lake, Cefn Cam	50
1.5	0: River cliff deposits, Pen Rhos, Afon Wen	52
1.5	1. Sediment size distributions. River cliff deposits, Pen Rhos, Afon Wen	53
	2: Colluvial reach. Afon Ty Cerrig at Pared yr Ychain	55
	3: Cascade reach. Afon Ty Cerrig, Pared yr Ychain	56
	4: Step pool reach, Afon Mynach, Tai cynheaf	56
	5: Bedrock reach, Afon Gain near Gwynfynydd	57
	6: Plane bed reach. Afon Mawddach, Ty'n y Groes	57
	7: Pool riffle reach, Afon Wnion west of Dolgellau	58
	8: Dune ripple reach, Mawddach estuary upper basin, Penmaenpool	58
	9: Fallen trees in the channel of the Afon Wen, Coed y Brenin	59
	0: Soils of the Mawddach catchment (after Soil Survey of Great Britain)	61
	i1: Soils of the Mawddach catchment. Humic ranker, brown podzolic soil, stagnohumic	
	gley, cambic gley	62
1.6	2: Soil catena, Allt Lwyd valley	64
	3: Soils in relation to slope and water movement	66
	4: Basic hydrological classification of soils	67
	5: HOST hydrological response models	68
	66: Hydrology of Soil Types (HOST) classification system	70
	77: Vegetation classes in relation to soil nutrient level and drainage	72
	8: Topogenous bog, Waen y Griafolen	73
	9: Transition from topogenous to ombrogenous blanket bog, Waen y Griafolen	74
	0: <i>Tricophorum</i> (deer grass) blanket bog, Waen y Griafolen	74
	11: <i>Carex echinata</i> (star sedge) mire, Llyn y Gafr, Cader Idris	75
	2: <i>Calluna</i> (ling) heath, Llyn Aran	76
	3: <i>Vaccinium</i> heath, grading into grassland. Llyn Aran	77
	4: Typical vegetation associated with soil types, slope and drainage conditions	78
	5: Species-rich water meadow in the upper basin of the Mawddach estuary	79
	6: Mixed broadleaf woodland, Afon Clyweddog	80
	7: Ground vegetation beneath a plantation of Douglas Fir, Hermon	80
	8: Surface runoff experiment, Hermon	81
	9: Clear felled hillslope at Hermon site 2	82
	0: Surface runoff at experimental sites, 26 July – 1 August 2003	83
	11: Cumulative surface runoff at experimental sites for the period 00:00h, 28 July	
	to 00:00h, 2 August 2003	84
1.8	2: Summary of hillslope processes operating in the Coed y Brenin forest	85
	3: Humidity levels on hillslopes, measured at 50cm above the ground	85
	4: Soil profiles beneath forestry and clear felled hillslope	86
	5: Comparative runoff rates for the three experimental sites	87
	66: Clear felling of forestry plantations, Oernant	88
	7: Preparation of a land use map using Mapmaker software	90
	8: Land Cover Categories, 17 class system	91
	9: Preparation of land use data files for input to hydrological models	92
	0: Summary of land utilisation for the Mawddach and Wnion sub-catchments	93
	1: Gold mine waste tips eroded during the July 2001 Mawddach flood	94
	2: Waste tip from the ore processing mill, Glasdir, about 1900	95
	3: Water supply reservoirs Llyn Eithin and Llyn Cynnwch	96
	4: The Maentwrog hydroelectric power scheme	98
/	here here here here here here here here	20

1.95: Cwrt weir	99
1.96: Downstream discharge into the Afon Cwrt	99
1.97: Ardudwy leat, between Cwrt weir and Crawcwellt weir	99
1.98: Assumed model for Ardudwy leat abstractions	102
2.1a: Coriolis deflection of winds approaching a low pressure centre in the northern	
hemisphere	106
2.1b: Geostrophic winds developed around a low pressure centre	106
2.2: The Coriolis effect	107
2.3: Meteosat-7 image for 18:00h, 8 March 2003	108
2.4: Flow of air masses in a vertical section of the northern hemisphere	109
2.5: Average pressure distribution and location of the Polar jet stream: winter	110
2.6: Diagramatic cross section through the Polar frontal zone of the North Atlantic	110
2.7: Induced vorticity along Rossby long waves	111
2.8: Jet stream map, identifying favourable locations for low pressure development	
in relation to jet streaks	112
2.9: Zonal and meridional Polar Front Jet patterns in the Mid Atlantic	113
2.10: Evolution of the frontal system of a mid-latitude depression	114
2.11: Satellite photograph showing the development of warm-sector depression	115
2.12: Satellite photograph showing comma cloud development	116
2.13: Satellite photograph showing late stage linking of a cyclonic centre to the Polar Front	117
2.14: Shapiro-Keyser (1990) frontal-cyclone evolution	118
2.15: Three-dimensional diagram illustrating the air flows associated with a cyclonic centre	
and trailing high pressure region	119
2.16: Jetstream map and synoptic chart for 29 October 2005	120
2.17: Ascent of warm air conveyor within a frontal system	121
2.18: Schematic representation of the flows in the region of the cold front	122
2.19: Schematic distribution of precipitation above the Scilly Isles for the rainfall	
event of 18 January 1971	123
2.20: Schematic time-height cross-section representing principal features of convective	100
rainbands on 18 January 1971	123
2.21: Conceptual model showing intersecting polar trough and polar front conveyors	124
2.22: Cold front approaching the Rhinog mountains	125
2.23: Flow paths around an isolated hill	127
2.24: Stable air flow generating cloud as it streams over the Aran mountains	128
2.25: Development of lee waves	129
2.26: Lee waves over the Welsh mountains and the Lake District, 25 February 2006	130
2.27: Seeder-feeder mechanism for rainfall generation	131
2.28: Structure of a typical thunder cloud	132
2.29: Rainfall radar image of a squall line over Kentucky	133
2.30: Convective uplift ahead of a cold front	134
2.31: Diagrammatic representation of convective processes at a squall line	135
2.32: Modelling sequence showing a cycle of convective cell development within a squall line	137
2.33: Weather station at Coleg Meirion-Dwyfor, Dolgellau	139
2.34: Meteorological recording sites	140
2.35: Pared yr Ychain raingauge site, Aran mountains and Llyn Morwynion raingauge site,	1 / 1
Rhinog mountains	141
2.36: Type A1 rainfall distribution pattern. Total storm rainfall, 8 November 2002	143
2.37: Synoptic charts for 8-9 November 2002	144 145
2.38: Regional meteorological charts for 8 November 2002	
2.39: Airflow directions across the Mawddach catchment, 8 November 20022.40: Type A2 rainfall distribution pattern. Total storm rainfall, 29 December 2002	146
	147
2.41: Synoptic charts for 28-30 December 20022.42: Regional meteorological charts for 29 December 2002	148 150
2.42: Regional meteorological charts for 29 December 2002 2.43: Airflow directions across the Mawddach catchment, 29 December 2002	150
2.43: Air how directions across the Mawddach catchinent, 29 December 2002 2.44: Type B rainfall distribution pattern. Total storm rainfall, 22 May 2003	
2.77. Type D tannan distribution pattern. Total storm tannall, 22 May 2005	152

2.45:	Synoptic charts for 22-23 May 2003	153
2.46:	Regional meteorological charts for 22 May 2003	154
2.47:	Airflow directions across the Mawddach catchment, 22 May 2003	155
2.48:	Flood damage to the Conwy Valley railway line, 4 February 2004	156
2.49:	Flooding at the head of the Mawddach estuary, 4 February 2004	157
2.50:	Jet stream maps for 2-4 February 2004	158
2.51:	Synoptic charts for 3-5 February 2004	159
2.52:	Typical rainfall pattern during the 2-4 February 2004 rainfall event	160
2.53:	Comparison of rainfall at inland (Capel Curig) and coastal (Aberdaron) sites during the	
	2-4 February 2004 storm event	161
2.54:	Satellite image: 4 February 2004	161
2.55:	July 3 storm over the Mawddach catchment, showing roll or shelf cloud ahead of the	
	main body of the storm	164
2.56:	Cloud base of the July 3 storm over the Mawddach catchment	164
2.57:	Synoptic chart for 00:00h, 4 July 2001	165
2.58:	Visible satellite image, 16:30h 3 July 2001	165
2.59:	Regional charts for 3 July 2001	166
2.60:	Rainfall totals for the periods 18:00h to 20:00h, 3 July 2001	167
2.61:	Nested mesoscale domains	169
2.62:	Spherical Polar Coordinates	169
2.63:	Sigma-pressure coordinate system	170
2.64:	Pressure distribution in the lower atmosphere	171
2.65:	Pressure distributions in meteorological models	172
2.66:	Jacobson scheme for a simple dry air meteorological model	173
2.67:	An example Tephigram	175
2.68:	Modelled two-hour rainfall totals for 00:00h and 12:00h, 24 October 2005	178
2.69:	Atmospheric profiles for Camborne, Castor Bay, Nottingham: 24 October 2006	179
2.70:	Atmospheric profiles for Camborne, 3-4 July 2001	181
2.71:	The principal modules of the MM5 modelling system	185
2.72:	Nested domains for the Mawddach meteorological model	186
2.73:	Terrain height data for the Mawddach model	187
2.74:	Land use classification for the Mawddach model	188
	Monthly vegetation fraction for the Mawddach model – October	188
2.76:	Dominant soil type for the Mawddach model	189
	Mean annual deep soil temperature for the Mawddach model	189
	Method of generating the Lambert Projection	190
	Lambert Projection onto a plane surface	191
	Mapping of data from a Lambert Projection to a rectangular grid	191
	An example of sigma levels defined in a meteorological model	193
	The advection equation	195
	Gas flow through a cell	197
	Spherical polar coordinates	198
	Components of the earth's angular velocity	198
	Principles of the Anthes-Kuo cumulus parameterisation scheme	203
	Schematic diagram showing moisture cycle in a column with convection	204
2.88:	Vertical profile of (T_c-T) in three clouds of radii 500, 1000 and 2000m, Pittsburgh,	
	1200 GMT 25 May 1976	205
	Air movements within a cloud, modelled by the Grell cumulus scheme	206
	MM5 3-hour rainfall simulations and raingauge totals, 8 November 2002	211
	MM5 3-hour rainfall simulations and raingauge totals, 29 December 2002	214
	MM5 3-hour rainfall simulations and raingauge totals, 22 May 2003	217
	Zones of mixing ratios >0.4 for cloud and rainfall, 3 February 2004	219
	MM5 3-hour rainfall simulations and raingauge totals, 2 February 2004	221
	Analysis of errors in rainfall prediction using the MM5 model	226
2.96:	Storm event of 8 November 2002. Determination of Spearman rank correlation	.
	coefficient for MM5 rainfall forecast and observed rainfall	227

2.97: Storm event of 29 December 2002. Determination of Spearman rank correlation	228
2.98: Storm event of 22 May 2003. Determination of Spearman rank correlation	228
2.99: Storm event of 3 February 2004. Determination of Spearman rank correlation	229
2.100: Storm event of 4 February 2004. Determination of Spearman rank correlation	229
2.101: Rainfall radar image and MM5 simulation, 3 February 2004	235
2.102: Neural network for post-processing of MM5 rainfall simulation data	238
2.103: Configuration of the neural network	240
2.104: Entry of predicted rainfall values ('Inputs') and actual raingauge readings ('Targets')	241
2.105: Neural Network software running in training mode to determine the optimum	271
parameters for the transform functions	241
2.106: After training, sets of input data can be processed by the neural network	241
2.100. After training, sets of input data can be processed by the neural network 2.107. Results of neural network processing of MM5 rainfall forecasts	242
2.107. Results of neural network processing of WWS familian forecasts 2.108: MM5 simulation of mid-troposphere temperatures, 29 December 2002	244
2.108: MM3 simulation of mid-troposphere temperatures, 29 December 2002 2.109: MM5 simulation of mid-troposphere vertical component of air flow,	243
29 December 2002	246
2.110: MM5 simulation of rainfall, 29 December 2002	247
2.111: MM5 simulation of upper troposphere wind direction, 29 December 2002	248
2.112: Tephigrams generated by the MM5 simulation north west of Ireland and Belfast,	240
29 December 2002	249
2.113: One hour rainfall total. 1800-1900, 3 July 2001. Anthes-Kuo model	251
2.114: Vertical section from Cardigan Bay to the Arenig mountains, 3 July 2001.	252
Anthes-Kuo model	252
2.115: Isosurfaces for cloud mixing ratio=0.4 and precipitation mixing ratio=0.4.	252
3 July 2001. Anthes-Kuo model	252
2.116: Tephigram generated by the MM5 simulation for Dolgellau, 3 July 2001	253
2.117: One hour rainfall total. 1800-1900, 3 July 2001. Grell model	254
2.118: Vertical section from Cardigan Bay to Arenig mountains. 3 July 2001. Grell model	255
2.119: Isosurfaces for cloud mixing ratio=0.4 and precipitation mixing ratio=0.4.	255
3 July 2001. Grell model	255
3.1: Main components of a hydrological model	258
3.2: Stanford Watershed Model	
	260
3.3: HYROM model using parameters to control the rates of transfer between stores	261
3.4: Two possible runs of an optimisation algorithm leading to different minima	262
3.5: Determination of the Kirkby topographic index	263
3.6: HEC-1 model for the Mawddach sub-catchments	265
3.7: SCS curve number plots	266
3.8: Synthetic and observed hydrographs: July 3, 2001, Tyddyn Gwladys	267
3.9: Components of Darcy's equation	268
3.10: The River Mawddach in Coed Y Brenin, showing a transition from	200
fast shallow supercritical flow to slow deep sub-critical flow	269
3.11: Schematic representation of the GSTARS model, with river flows determined	270
from channel cross sections and river bed elevations at specified points	270
3.12: Finite element grid for the Mawddach floodplain at Tyddyn Gwladys,	071
Coed y Brenin, developed with River2D	271
3.13: Experimental areas and hydrological recording sites	275
3.14: Tyddyn Gwladys river gauging station	277
3.15: Readings for Tyddyn Gwladys river gauging station, Afon Mawddach, for the period	
September 2002 to July 2003	278
3.16: Hydrographs for the storm events, 2001-2003, Tyddyn Gwladys	279
3.17: Mawddach sub-catchments and river reaches	281
3.18: Wnion sub-catchments and river reaches	282
3.19: Surveying the channel cross section, Afon Gain	283
3.20: River cross-section surveys at Pont y Grible and Pont Dolgefeiliau	284
3.21: River cross-section surveys at Cymmer Abbey and Llanelltyd	285

3.22:	The Ganllwyd reach of the Afon Mawddach during low flow and flood	286
3.23:	Barometric water depth recorder	288
3.24:	Water depth recordings for Pont Dolgefeiliau, December 2002 to April 2003	289
3.25:	Propeller flowmeter used in hydrograph site calibration	290
3.26:	Flow velocity measurement in the river channel	291
3.27:	Example water flows at different river stages, Pont Dolgefeiliau, Afon Eden	293
	Debris accumulations around trees during the July 2001 flood, Afon Mawddach	294
	Afon Gain hydrograph recording site	296
	Stage-discharge chart for the Afon Gain hydrograph recording site for the period	
	December 2002 – May 2003	297
3.31:	Afon Eden hydrograph recording site	298
	Stage-discharge chart for the Afon Eden hydrograph recording site for the	
	period December 2002 – April 2003	299
3.33:	Afon Wen hydrograph recording site	300
	Stage-discharge chart for the Afon Wen hydrograph recording site for the period	
	December 2002 – February	301
3 35.	Afon Ty Cerrig hydrograph recording site	302
	Stage-discharge chart for the Afon Ty Cerrig hydrograph recording site for	502
5.50.	the period July 2003 – September 2003	303
3 37.	Bont Fawr, Dolgellau, photographed from the Environment Agency gauging station	304
	Stage height chart for the Afon Wnion gauging station for the period	504
5.50.	November 2002 – May 2003	306
3 30.	Example stage discharge chart for the Afon Wnion gauging station for the	500
5.59.	period November 2002 – May 2003	306
3 10.	Original hydrographs recorded for the Afon Wnion, and after transformation	500
5.40.	of Pared yr Ychain data	308
2 11.	Site prepared for instrumentation, and after installation of water flow	508
5.41.		309
2 42.	recorders and data loggers, Pared yr Ychain	
	Hillslope water flows at Pared yr Ychain, 7-12 September 2003	310
	Surface runoff and soil throughflow monitoring site, Tir Penrhos, Hermon	311
5.44:	Surface runoff and soil throughflow monitoring at Tir Penrhos, November 2002	210
2 15	to September 2003	312
	Watershed Modelling System model for the upper Mawddach	315
3.40:	A section of the Oernant sub-catchment, showing the Triangulated Irregular	216
0.47	Network constructed by WMS	316
	Allocation of Curve Numbers from land use and geology overlays.	317
	Land use overlay for the WMS Mawddach model	318
	Soil Conservation Service curve number chart	319
	Construction of Thiessen polygons for the Mawddach sub-catchment	321
	Setting up a storm rainfall sequence for a raingauge station	321
	Orders of surface water flow modelled by WMS HEC-1	322
	Illustration of basin parameters computed for Mawddach sub-catchments	324
	River routing diagram produced by WMS for the upper Mawddach	325
	Rain gauge sites, showing totals for the period 18:00–19:00 h, 3 July 2001	326
	Cumulative curves for rainfall during the 3 July 2007 storm event	328
3.57:	Comparison of recorded and synthetic hydrographs: Tyddyn Gwladys gauging station,	
	3 July 2001	329
3.58:	Comparison of recorded and synthetic hydrographs: Bont Fawr gauging station,	
	Dolgellau, 3 July 2001	329
	3-4 July 2001 flood event: hydrographs for Mawddach sub-catchments	331
	3-4 July 2001 flood event: hydrographs for Wnion sub-catchments	331
3.61:	Comparison of modelled and recorded hydrographs, Tyddyn Gwladys,	
	Afon Mawddach, 8 November 2002	335
3.62:	Comparison of modelled and recorded hydrographs for Tyddyn Gwladys,	
	Afon Mawddach, 29 December 2002	336

3.63:	Comparison of modelled and recorded hydrographs for Pont Dolgefeiliau,	
	Afon Eden, 29 December 2002	336
3.64:	Comparison of modelled and recorded hydrographs for Hermon,	
	Afon Wen, 29 December 2002	337
3.65:	Comparison of modelled and recorded hydrographs for the Afon Gain	
	near Pistyll Cain, 29 December 2002	337
	Total storm rainfall(mm), 8 March 2003	338
3.67:	Comparison of modelled and recorded hydrographs for Tyddyn Gwladys,	220
2 (0.	Afon Mawddach, 8 March 2003	339
3.68:	Comparison of modelled and recorded hydrographs for Pont Dolgefeiliau,	220
2 (0)	Afon Eden, 8 March 2003	339
5.09:	Comparison of modelled and recorded hydrographs for the Afon Gain near Pistyll Cain, 8 March 2003	340
3 70.	Comparison of modelled and recorded hydrographs for Tyddyn Gwladys,	540
5.70.	Afon Mawddach, 21-23 May 2003	341
371.	Comparison of modelled and recorded hydrographs for Pont Dolgefeiliau,	541
5.71.	Afon Eden, 21-23 May 2003	341
372.	Comparison of modelled and recorded hydrographs for the Afon Gain near	541
5.12.	Pistyll Cain, 21-23 May 2003	342
3.73:	Comparison of modelled and recorded hydrographs for Tyddyn Gwladys,	0.12
	Afon Mawddach, 2-4 February 2004	343
3.74:	Hydrographs generated by theHEC-1 model for sub-catchments of the	
	Afon Wnion, storm events of 2-4 February 2004	343
3.75:	Recent sediment accumulation downstream from Bont Fawr, Dolgellau	347
	Sediment accumulation alongside the Marian Mawr playing fields, Dolgellau	
	at Lower Wnion site 3	347
3.77:	Historic river bed gravels exposed at low water level, Afon Wnion near	
	Coleg Meirion-Dwyfor, Dolgellau	348
	Present day gravel and cobble deposits in the Afon Wnion	348
	Gravel deposits around the tidal limit of the Afon Mawddach, Llanelltyd site 7	349
3.80:	Area of unstable gravel deposits at the confluence of the rivers Mawddach and	
• • •	Wnion, Llanelltyd site 9	349
3.81:	Schematic diagram of the key processes operating in the CAESAR cellular	051
2.02.	automaton model	351
3.82:	Mass movement at Oernant in the upper valley of the Afon Gain following	250
2 92.	the July 2001 storm event River reach data for input to the GSTARS model	352 354
	Calculation of total stream energy	354
	Kinetic energy – water depth curve for constant discharge	355
	Water surface profiles in gradually varied flow	350
	Components of the model for conservation of sediment mass	360
	Sediment processes modelled by GSTARS	362
	Entry of channel course and locations of surveyed cross-sections for the	502
5.67.	Alltlwyd reach, Afon Mawddach	365
3.90:	Input of river cross-section geometry and surface roughness	366
	Specification of size fraction boundaries for the Mawddach model	366
	Specification of fractions of different sediment size grade at each cross-section	
	site within a river reach	367
3.93:	Sediment ranging from sand to cobble grade, exposed in the bed and banks	
	of the Afon Gain, Oernant reach	367
3.94:	Specification of controls on bed and bank erosion and deposition	368
3.95:	Entry of discharge and water elevation data during a storm event on a reach	
	of the Afon Mawddach	369
	Reaches of the Mawddach sub-catchment	371
3.97:	Sediment movement during the 3 July 2001 flood event: Mawddach	
	sub-catchments	372

3.98: Modelling of channel profile change during the July 2001 flood event,	
Oernant reach of the Afon Gain.	373
3.99: Photograph of the Oernant site. River cliff erosion occurred during the	
July 2001 flood, with gravel deposition on the meander slip-off slope	373
3.100: Erosion/deposition volumes (m^3) for river sections on the Afon Gain	374
3.101: Erosion of glacial till by the Afon Gain at Oernant sites 1–2	375
3.102: Gravel and sand deposition on grassland at Oernant site 4	375
3.103: Deposition of sand and silt on the Mawddach floodplain, Gelligemlyn	377
3.104: Confluence of the Afon Eden with the Afon Mawddach	377
3.105: Sediment movement, 3 July 2001 flood event: Whion sub-catchments	379
3.106: Mixed sediment which accumulated close to Bont Fawr, Dolgellau, as a	517
result of the July 2001 storm	380
3.107: Detail of the sediment accumulation in fig. 3.106	380
3.108: Sediment output rates for sediment size classes during each time interval	500
of the 3 July 2001 flood event	381
3.109: Sediment output rates for sediment size classes during each time interval	501
of the 3-4 February 2004 flood event	382
•	
3.110: Sediment movement, 3-4 February 2004 flood: Mawddach sub-catchments	383
3.111: Sediment movement, 3-4 February 2004 flood: Wnion sub-catchments	384
3.112: BBC News report on the flood risk for Dolgellau. 3 October 2005	387
3.113: Environment Agency flood map: Dolgellau	388
3.114: 25m gridded elevation point data set used as a basis for Dolgellau	200
floodplain models, augmented by surveyed points along the river channel	389
3.115: RMA2 finite element grid for the Dolgellau flood plain model	391
3.116: Definition of a transient series of inflow rates for a RMA2 model	392
3.117: River2D model for the Afon Wnion at low flow	392
3.118: Model results for constant river flow of 350 m^3 /s. RMA2 and River2D	394
3.119: River2D simulation of Afon Wnion steady state inflow of 150m ³ /s	396
3.120: Flooding on the western outskirts of Dolgellau	397
3.121: Flooding of the Marian Mawr fields behind the flood defence embankment	397
3.122: Flooding of fields bordering the Afon Wnion near Coleg Meirion-Dwyfor	397
3.123: River2D simulation of Afon Wnion steady state inflow of 200m ³ /s	398
3.124: Flooding in the town car park alongside Bont Fawr, Dolgellau	399
3.125: Flooding of the A470 road alongside Bont Fawr, Dolgellau	399
3.126: River2D simulation of Afon Wnion steady state inflow of 300m ³ /s	400
3.127: Hypothetical maximum flood hydrograph for the Afon Wnion entering the	
town of Dolgellau	401
3.128: HEC-1 hillslope runoff model for the Aran sub-catchment	402
3.129: Extreme flood hydrograph for the Afon Aran, Dolgellau	402
3.130: River2D simulation of worst case flooding scenario for the Afon Wnion,	
Dolgellau	404
3.131: River2D simulation of 200m ³ /s for the Afon Wnion, Dolgellau	407
3.132: Experimentally observed patterns for flow past a rigid cylinder at different	
Reynolds numbers	408
3.133: Determination of vegetative coefficient	410
3.134: Wet woodland alongside the Afon Wnion downstream of Dolgellau	411
3.135: Afon Mawddach at the Tyddyn Gwladys forest site	412
3.136: Bench alongside the Afon Mawddach at the Tyddyn Gwladys site. Flood	
debris from the July 2001 event can be seen	413
3.137: Cefn Deuddwr forestry site, looking downstream on the Afon Mawddach	413
3.138: Cefn Deuddwr forestry site, looking upstream on the Afon Mawddach	414
3.139: Flood debris from the July 2001 event caught against a tree	414
3.140: Surveying in progress at Cefn Deuddwr on the Afon Mawddach	415
3.140. Surveying in progress at Cern Deuddwr on the Aron Mawddaen 3.141: Triangulated irregular network of surveyed points at Cefn Deuddwr	415
3.141. Thangulated integular network of surveyed points at Cern Deuddwr 3.142: Generation of a contour map for theCefn Deuddwr site	415
	410
3.143: Graph for estimation of effective drag coefficient for wide flood plains	41/

3.144:	Roughness height calibration for the Cefn Deuddwr floodplain	419
3.145:	Roughness height calibration for the Tyddyn Gwladys floodplain	419
3.146:	River2D models for the Tyddyn Gwladys forestry site	421
	River2D models for the Cefn Deuddwr forestry site	422
	Environment Agency flood map for the lower Wnion valley between	
	Bontnewydd and Dolgellau	424
3.149:	Upper floodplain basin, Afon Wnion, south-west of Dolserau bridge	425
	Features of the Wnion floodplain upstream from Dolserau bridge	426
	Afon Wnion at Dolserau bridge	426
	Lower floodplain basin, Afon Wnion	428
	Low flow conditions for the Afon Wnion lower basin	429
	Maximum extent of flooding in the Afon Wnion lower basin during the	-
	3 July 2001 storm event	429
3.155:	Afon Wnion: water velocity and water depth, close to maximum flow	,
	during the rising stage of the 3 July 2001 storm event	430
3.156:	Topographic model for the Wnion lower floodplain basin under current	
2.120.	channel conditions, after introduction of a 2m weir close to the Wnion viaduct	431
3 157.	Afon Wnion lower floodplain: simulation of weir and flood interception	101
5.157.	basin under slightly increased flow conditions	432
3 158.	Afon Whion weir scheme: water velocity and depth close to maximum	-152
5.150.	flow during the 3 July 2001 storm event	433
3 1 5 9.	Maximum extent of flooding for the Afon Wnion lower basin with weir	т.).)
5.157.	scheme: 3 July 2001 storm event	434
3 160.	Afon Wnion upper floodplain: extent of flooding during the 3 July 2001	тСт
5.100.	storm event	435
3 161.	Afon Whion upper basin: water velocity and depth, close to maximum	+55
5.101.	flow during the rising stage of the 3 July 2001 storm event	435
3 162.	Topographic model for the Wnion upper floodplain basin under current	433
5.102.	channel conditions and after introduction of a 2m weir	437
3 163.	Maximum extent of flooding for the Afon Wnion upper basin with weir	437
5.105.	scheme: 3 July 2001 storm event	438
3 164.	Afon Whion: water depth and velocity, close to maximum flow during the	430
5.104.	rising stage of the 3 July 2001 storm event	438
3 165.	Inflow and outflow hydrographs for the Afon Wnion lower floodplain	430
5.105.	models, 3 July 2001 storm event	441
3 166.	Inflow and outflow hydrographs for the Afon Wnion upper floodplain	441
5.100.	models, 3 July 2001 storm event	442
3 167.	•	444
	Conceptual model for responses to rainfall on steep hillslopes of Coed y Brenin Afon Wen, downstream of Hermon, during dry conditions	444 445
		445
	Emplacement of temperature probes in river gravel, Afon Wen, Hermon	440
	Example data from riverbed temperature monitoring, Afon Wen, Hermon Model grid for simulating 3-dimensional groundwater flow	447
	Afon Wen MODFLOW model . Base map with boundary and river system	450
	MODFLOW grid for the Afon Wen model, showing coordinate system	451
5.174:	Topography of the Afon Wen subcatchment. DEM triangulated network	450
2 175.	used to assign cell elevations to layers of the MODFLOW model	452
	Geology of the Afon Wen subcatchment	453
	Calibrated values for bedrock conductivity	455
	Calibrated values for bedrock recharge rate	456
	Calibrated values for channel bed conductivity	457
5.179:	Storm event of 29 December 2003 over the Afon Wen subcatchment.	450
2 100	Raingauge data for Hermon, and hydrograph for the Afon Wen	458
3.180:	Lower slopes of Rhobell Fawr. Semi-natural broadleaf woodland above	100
2 1 0 1	the village of Hermon	460
3.181:	Afon Wen MODFLOW model for a steady riverflow rate of 0.5m ³ /s	462

3.182:	Hydraulic head cross-sections along west-east rows of cells of the	
	Afon Wen MODFLOW model	464
3.183:	Groundwater flow graphs for MODFLOW simulation of the 29 December	
	2003 flood event	466
3.184:	Hillslope water flows within a blanket bog	469
	Models for water flow within a blanket bog	469
	Model showing water flow pathways around a spring seepage area associated	
011001	with a localised peat dome	470
3 187.	Models for stream penetration depth and outflow hydrograph patterns	471
	Features of a water table graph used in the estimation of evapotranspiration rate	472
	Peat hydraulic conductivity experiments by Ingram et al. (1974)	473
	Valley of Cefn Clawdd, with the Rhinog escarpment in the background	476
	Humified peat overlying cream clay with water-rounded pebbles, Cefn Clawdd	477
	Example bore hole record for Cefn Clawdd, 27 March – 6 April 2003	478
	Ordovician mudstone bedrock exposed beneath glacial till, Waen y Griafolen	479
	Waen y Griafolen, showing the extent of blanket peat and positions of cross sections	480
	Summary of stratigraphic data collected from field surveys, Waen y Griafolen	481
	Geophysical survey and interpretation of sections	483
	Older humified peat experiencing erosion near the plateau basin outlet stream	484
	Relict drainage channels, Waen y Griafolen	486
	Surveyed cross sections of relict drainage channels, Waen y Griafolen	487
	Surface drainage within Waen y Griafolen	489
	Vertical air photograph of the central area of Waen y Griafolen, showing the pattern	407
5.201.	of ploughed drainage ditches	490
3 202.	Superficial deposits and former drainage pattern, Waen y Griafolen	490
	Waen y Griafolen borehole with water depth recorder	492
	Rainfall and watertable records for the Waen y Griafolen borehole site	493
	Emplacing a dip well tube in older peat at site 7, Waen y Griafolen	494
		490
5.200.	Locations of dip wells, borehole water depth recorder and hydrograph site,	496
2 207.	Waen y Griafolen Outlet stream hydrograph site. Ween y Griafolen	490
	Outlet stream hydrograph site, Waen y Griafolen Uudeograph for the Afon Meuuddoch Ween y Griafolen 5, 12 Sontember 2002	498
	Hydrograph for the Afon Mawddach, Waen y Griafolen, 5-13 September 2003	
	Stratigraphic sequences plotted on the MODFLOW model from geophysical data	501
5.210:	Waen y Griafolen MODFLOW three-dimensional grid, showing example South-North	502
2 211.	and West-East cross sections	502
5.211:	Pattern of river channels and ploughed drainage ditches incorporated into the	502
2 2 1 2	Waen y Griafolen MODFLOW model	503
	MODFLOW model for the rainfall sequence of 8-13 September 2003	506
3.213:	North-south cross sections through the Waen y Griafolen model for 12:00h,	507
2 21 4.	12 September 2003	507
	Key to numbered river reaches	508
	Aerial view of the mouth of the Mawddach estuary, showing the Ro Wen shingle spit	511
3.216:	Classification of coastal inlets according to the Australian Natural Resources	510
0.017	Atlas process model	512
	Time-integrated kinetic energy diagram for a wave dominated estuary	512
	Idealised model for a wave-dominated estuary	513
3.219	Water flow cross sections, looking into an estuary in the Northern hemisphere.	
	Blue shading represents zones where inflows exceed outflows	515
	Sand deposits showing large scale ripples, Farchynys	516
	Tidal marshes around the Mawddach estuary	517
3.222:	Surveying in the area of Garth Isaf to determine the relative elevations of estuary	
	sediment and vegetation zones	518
	Stabilised mudflats around Fegla Fach	520
	Development of salt marsh at Glandwr	521
	Morfa Mawddach. Sheep grazed salt meadow	521
3.226:	Erosion of saltmarsh alongside the main tidal channel, Abergwynant	522

3.227: Phragmites australis reed bed community alongside the tidal channel of the upper basin	523
3.228: Wet woodland of willow, alder and birch above Phragmites reed bed near Penmaenpool	523
3.229: Flood wall at Penmaenpool, separating salt marsh from improved grassland	524
3.230: Overtopping of flood embankment in the upper basin, flood event of 3 February 2004	524
3.231: Area of land reclamation by tipping of building waste into reed beds, Penmaenpool	525
3.232: Bathymetry of the Mawddach estuary	527
3.233: Location of the Barmouth tidal gauge below Barmouth railway bridge	529
3.234: Tidal height data for the month of April 2003, Barmouth bridge	530
3.235: Tidal recording at Penmaenpool bridge	531
3.236: Location of hydrograph recorders on tidal reaches of the rivers Mawddach and Wnion	532
3.237: Hydrograph for the Afon Mawddach near the tidal limit at Llanelltyd,	
June – September 2003	533
3.238: Hydrograph for the Afon Wnion near the tidal limit at Tal yr Afon, west of Dolgellau,	000
June – September 2003	534
3.239: Arrival times for tidal peaks along the Mawddach estuary	535
3.240: Tidal maximum heights, at the estuary mouth and on river reaches at the estuary	000
head, for the period 16-24 February 2003	536
3.241: Hydrographs for recording points at the mouth and head of the Mawddach estuary,	000
10-24 February 2003	537
3.242: Tidal maximum heights, at the estuary mouth and on river reaches at the estuary	001
head, for the period 29 March to 7 April 2003	538
3.243: Hydrographs for recording points at the mouth and head of the Mawddach estuary,	220
28 March – 8 April 2003	539
3.244: River2D model for the Mawddach estuary. Triangulated finite element grid	541
3.245: Simulation of 4m tide maximum and minimum water levels for the Mawddach estuary	543
3.246: Water flows reaching 5m3s-1 through the estuary mouth at the period of maximum	545
inflow on a rising tide	546
3.247: Tidal peak travelling up the estuary through the channel constriction between the	510
lower and middle basins	546
3.248: Inflowing tide meeting river outflow at the channel constriction between the middle	540
and upper basins	547
3.249: Flow reversal as an incoming tide passes Penmaenpool	547
3.250: Tidal outflow begins as water level falls at the estuary mouth. Extensive drainage	547
from tidal flats is occurring	548
3.251: Drainage from salt marshes and reed beds in the upper estuary basin with a falling tide	548
3.251: Simulated water height (blue) and channel flow (red) at Penmaenpool bridge during	540
tidal flood-ebb cycles	549
3.253: finite element grid for the upper estuary basin model	551
3.254: Case 1. River flood with tidal inflow under current conditions	
	553
3.255: Case 1. River flood with tidal outflow under current conditions	554
3.256: Accumulation of forestry debris at Penmaenpool bridge from the July 2001 flood event	555
3.257: Tree washed downstream onto low lying land around the head of the Mawddach estuary	
during the July 2001 flood event	555
3.258: Case 2. River flood event after land reclamation and construction of flood	
embankments at the head of the Mawddach estuary	556
3.259: Coarse sediment accumulation at the confluence of the rivers Mawddach and Wnion	557
3.260: Case 3. River flood model after 0.5m gravel accumulation, rising tide	559
3.261: Case 3. River flood model after 0.5m gravel accumulation, falling tide	560
4.1: Schematic diagram of the grid-based catchment discretisation in the SHE model	564
4.2: Soil zone representations in the SMDR model	565
4.3: Schematic diagram for the 4R hydrological model	566
4.4: MM5 rainfall simulations for storms in the Susquehanna catchment	568
4.6: Components of the Mawddach integrated model. Operational modules unshaded.	_
Modules not incorporated in the operational model are shaded.	571

4.7: Stages in the determination of soil parameters for the hillslope model	573
4.8: Relationship between soil conductivity and effective saturation	574
4.9: Factors determining Kirkby wetness index	574
4.10: Lookup table for allocation of HOST soil classes to hillslope grid squares	575
4.11. Soil and subsoil hydrological properties related to texture	576
4.12: Conceptual cascade store model for the Brugga Basin, Black Forest, Germany	577
4.13: Water flows associated with a cell of the Mawddach hillslope model	578
4.14: Partitioning of downslope flow depending on slope direction	579
4.15: System flowchart for the Mawddach hillslope model	581
4.16: Modularisation of the hillslope setup program	583
4.17: A demonstration of the contouring algorithm for digital elevation data	584
4.18: Pits in the uncorrected digital elevation model for Cefn Clawdd, Trawsfynydd.	585
4.19: Occurrence of a pit in the digital elevation model, and its correction to restore	
downslope drainage	585
4.20: Designation of surface stream cells, Cefn Clawdd sub-catchment	586
4.21: Example of the determination of upslope contributing area for a grid point within	
Cefn Clawdd sub-catchment	587
4.22: Sequence of stages in the calculation of Kirkby wetness index	588
4.23: Geological map of the Alltlwyd sub-catchment	589
4.24: Land use map of the Alltlwyd sub-catchment	590
4.25: Kirkby wetness index plot for the Alltlwyd sub-catchment	591
4.26: Computer generated HOST soil map for Allt Llwyd	592
4.27: Look-up table relating HOST soil class to soil depth and texture	593
4.28: Determination of sub-catchment boundaries	594
4.29: Example time frame from the storm rainfall sequence of February 2004, specified	
a 1km grid	595
4.30: Set of data arrays on a 50m grid created for the sub-catchment, and used for initia	
of the hillslope model run	596 station
4.31: Output map showing infiltration to groundwater within the Afon Wen sub-catchm	
during the February 2004 storm event	597
4.32: Hydrological output for a cell of the hillslope model	599
4.32: Design for the soil throughflow monitoring sites at Hermon, Tir Penrhos and	577
Pared yr Ychain	602
4.34: Location of hillslope monitoring sites, Hermon	603
4.35: Surface runoff at experimental sites, 26 July – 1 August 2003	604
4.35: Surface runoff and downslope shallow throughflow for Hermon site C,	004
July – August 2003	605
4.37: Afon Wen sub-catchment, Hermon. Modelled surface runoff for the period 05h-0	
25 July 2003	606
4.38: Modelled throughflow at Tir Penrhos, Hermon, for the period November 2002 –	000
February 2003	608
•	
4.39: Modelled surface runoff at Tir Penrhos, Hermon, for the period November 2002 -	- 609
February 2003	
4.40: Relative rates of throughflow and surface runoff for the lower Afon Wen sub-cate	
17 November 2002, 21h-22h	610
4.41: Location of runoff and throughflow monitoring sites, Pared yr Ychain	611
4.42: Throughflow at Pared yr Ychain hillslope sites, storms of 9 and 11 September 20	03 612
4.43: Relative rates of throughflow and surface runoff for the upper Wnion valley,	<i>c</i> 1.4
24 July 2003, 08h – 09h	614
4.44: Stream order classification for the upper Wnion valley	615
4.45: Modelled and recorded hydrographs for the Afon Ty Cerrig for the period	
July 2003 – September 2003	616
4.46: Stream order classification for the upper Afon Wen	617
4.47: Modelled and recorded hydrographs for the Afon Wen, Hermon for the period	
December 2002 – February 2003	618

4.48: Waen y Griafolen blanket bog. Water table monitoring was carried out at borehole B,	
with monitoring of the outlet stream at A	619
4.49: Relative rates of throughflow and surface runoff for Waen y Griafolen,	
4 June 2003, 20h-21h	621
4.50: Comparison of borehole water levels on the Waen y Griafolen blanket bog and the	
modelled river discharge of the outlet stream	622
4.51: Sub-catchments and routing links of the integrated model	625
4.52: Configuration for the Mawddach flood forecasting system	626
4.53: Example plot showing a rainfall gradient across the catchment	627
4.54: Example time-frames from the predicted rainfall sequence over North Wales,	
3-4 February 2004, reformatted for input to the Mawddach hillslope model	629
4.55: Hydrographs for Tyddyn Gwladys, Afon Mawddach, for the period 2-5 February 2004	631
4.56: Comparison of the MM5 – hillslope model and the HEC-1 model for the Rivers	
Mawddach and Wnion at the tidal limits close to their confluence: 2-5 February 2004	632
4.57: Changing extent of surface runoff in the Allt Lwyd sub-catchment during the storm	
event of 3 February 2004:	634
4.58: Hydrological responses in the Allt Lwyd valley during the storm event of 3 Feb 2004	635
4.59: Example time-frames from predicted rainfall sequence over North Wales, 3 July 2001	637
4.60: Hydrographs for Tyddyn Gwladys on the Afon Mawddach and Dolgellau on the	10 0
Afon Wnion, 3 July 2001	638
5.1: Example storm rainfall maps, illustrating the development of the raingauge recording	
network in the Mawddach catchment over the period 2002-3	646
5.2: Comparison of rainfall at the valley location of Allt Lwyd and the nearby mountain	040
location of Waen y Griafolen	648
5.3: Relationship between rain periods and wind direction in the Wnion valley, February 2003	651
5.4: Localities on the axis of high rainfall across the Mawddach catchment	653
5.5: Mist drifting into forestry plantations, Pared yr Ychain and Hermon	654
5.6: Idealised convective case studies for the WRF meteorological model	659
5.7: Example result from the idealised Alpine model of Schneidereit and Schär (2000)	660
5.8: Examples of sub-surface throughflow and overland flow	664
5.9: Modifications carried out to throughflow monitoring sites at Pared yr Ychain by the	
introduction of a flow divider	666
5.10: Theoretical models of permeable material with interconnecting pore spaces, and fractured	
impermeable material with groundwater flow planes intersecting cell boundaries	671

List of tables

Tab	Table	
	VES interpretation, Allt Lwyd Relative rainfall runoff volumes from experimental sites with different land use, Hermon	50 87
	Data sets used to initialise the Mawddach MM5 Planetary Boundary Llayer model Comparison of the accuracy of MM5 initial rainfall forecasts with forecasts after	187
	processing by neural network	243
3.1:	SCS Curve Numbers used in the Mawddach catchment model	319
3.2:	Hourly rainfall totals and total storm rainfall (mm) during the 3 July 2001 storm event.	327
	Sediment output rate (tonnes/hour) during each time interval, 3 July 2001 flood event. Sediment output rate (tonnes/hour) during each time interval of the 3-4 February 2004	381
	flood event.	382
3.5:	Estimates of coarse sediment deposition along the Afon Wnion through Dolgellau	
	during major flood events	405
3.6:	Computed values of Manning roughness coefficient n for the case study forestry	
	sites. Locations of sample plots are shown in figures 3.144 - 3.145.	418
	Summary of geophysical observations at Waen y Griafolen	482
	Vegetation communities within Waen y Griafolen	488
	Water level at different times measured from top of the dip wells (after Awissa, 2003)	497
3.10	: Layer thickness at each site when curves from EM and VES are combined	501
	 Calibrated hydrological parameters for the Waen y Griafolen MODFLOW model Modelled water flows (m³) entering surface streams from peat during hour 2 of the 	504
	3 July 2001 storm event.	509