
 Chapter 2: Postage Rates 31

2 Postage Rates

In this project we will create a website page which will allow the user to check the postage rate for a

letter or parcel. The postage rates at the time of writing are shown in the table on the next page.

Postage depends on the size of the item being sent, its weight, and whether first class or second

class delivery is required. In order to calculate the cost, we will design an input page to carry out the

following functions:

 Allow the weight of the item to be entered as kilograms and grams.

 Allow the length and width of the item to be entered in centimetres. For common letter

sizes, it will be easiest for the user to click on a picture image of the envelope. The program

will then insert the corresponding length and width values into the input boxes

automatically.

 Allow the thickness of the item to be entered. This will be given as a choice of three

thickness bands. For thickness over 2.5cm, the actual thickness measurement will also be

required.

When the ‘Display postage rate options’ button is clicked, the costs for first and second class post

(where applicable) will be displayed. The user can then make a choice as to which service they wish

to use.

32 Web Applications with C#.ASP

 Chapter 2: Postage Rates 33

Start a new project:

Select Visual C# Web, and click on the ASP.NET Empty Web Application option. Choose a location

to store your project, and give the name ‘Postage Rates’.

The empty web site project will be created. Right click the Postage Rates project icon, then select

Add / New item. Click on Web Form, and give the name ‘Calculator’.

34 Web Applications with C#.ASP

The Calculator HTML page will open. Add a title ‘Postage Calculator’ for the page tab when the

website runs. Give an id name for the “content” division, and add a main heading ‘Postage Rates’ at

the top of the page:

<head runat="server">

 <title>Postage Calculator</title>

</head>

<body>

 <form id="form1" runat="server">

 <div id="content">

 <h1>Postage Rates</h1>

 </div>

 </form>

</body>

</html>

Click the ‘Design’ button to view the page so far…

We can imporove the appearance by centering the title and using a different font. To do this, we

will need a style sheet.

Go to the Soution Explorer window, right click the Postage Rates project icon and select Add / New

item. Choose Style Sheet, and accept the name ‘StyleSheet1’.

 Chapter 2: Postage Rates 35

Add code to the style sheet:

body

{

 background: #E9E9E9;

 font-family: Arial, Helvetica, sans-serif;

 margin: 0px;

 padding: 0px;

}

#content

{

 width:1000px;

 height:800px;

 background-color: White;

 margin-left: auto;

 margin-right: auto;

 color: Black;

}

h1

{

 text-align: center;

 font-size: xx-large;

 font-weight:normal;

}

Return to the Calculator HTML page and add a link to the style sheet in the <head> section of the

page:

<head runat="server">

 <title>Postage Calculator</title>

 <link rel="Stylesheet" type="text/css" href="StyleSheet1.css" />

</head>

Use the Design button option to see a preview of the page. We have created a content area with a

width of 1000 pixels. This has a white background, and is centred on the grey background of the

screen. The page heading is now also centred, and is displayed in a sans-serif font.

36 Web Applications with C#.ASP

Click the ‘Source’ button to return to the HTML page.

The next step is to add components for input of the size and weight of the postal item. It will be

convenient to lay out the screen using a series of divisions. These will provide a neat set of boxes

into which we can insert components.

Add code to the ‘content’ division. Each of the new subdivisions has an ID name which describes its

purpose.

<body>

 <form id="form1" runat="server">

 <div id="content">

 <h1>Postage Rates</h1>

 <div id="weightAndSize">

 </div>

 <div id="envelopeOptions">

 </div>

 <div id="thickness">

 </div>

 <div id="buttonAndResultsOutput">

 </div>

 </div>

 </form>

</body>

 Chapter 2: Postage Rates 37

We require as the top two divisions, weightAndSize and envelopeOptions to be alongside one

another, with the remaining two divisions taking the full width of the page below. To arrange this, go

to the style sheet and add formatting code for the divisions.

h1

{

 text-align: center;

 font-size: xx-large;

 font-weight:normal;

}

#weightAndSize

{

 margin: 10px;

 float: left;

 width: 450px;

 padding: 10px;

 border: 1px solid #bbb;

}

#envelopeOptions

{

 margin: 10px;

 float: right;

 width: 450px;

 padding:10px;

 border:1px solid #bbb;

}

#thickness

{

 margin: 10px;

 float:left;

 width: 960px;

 padding:10px;

 border:1px solid #bbb;

}

#buttonAndResultsOutput

{

 margin: 10px;

 float:left;

 width: 960px;

 padding:10px;

 border:1px solid #bbb;

}

38 Web Applications with C#.ASP

Return to the design view. The first two divisions are now arranged alonside each other, with the

remaining divisions underneath, as we require.

We can now work on the first division where weights and sizes are input. This section can be laid

out as a table so that the components are neatly aligned. We will construct this table in the

weightAndSize division. Insert code to input weight.

 <div id="weightAndSize">

 <table>

 <tr>

 <td>

 Weight

 </td>

 <td>

 <asp:TextBox ID="txtKilos" runat="server" Width="60" Text="0">

 </asp:TextBox>

 Kilograms

 </td>

 <td>

 <asp:TextBox ID="txtGrams" runat="server" Width="60" Text="0">

 </asp:TextBox>

 Grams

 </td>

 </tr>

 </table>

 </div>

 Chapter 2: Postage Rates 39

Click the Design button to go to preview window.

We have created the first line of the input table successfully, but it would be better if this was

centred on the page and cells were separated more. We will also make the font size slightly smaller.

Go to the style sheet and add an entry for table. Also add a line to the body section to adjust the

font size.

body

{

 background: #E9E9E9;

 margin: 0px;

 padding: 0px;

 font-size: .80em;

}

table

{

 margin-left: auto;

 margin-right : auto;

 border-spacing: 10px;

}

#content

{

 width:1000px;

 background-color: White;

Go back to the Design screen and see the effects of these changes. The layout now looks better.

40 Web Applications with C#.ASP

Return to the HTML page and add code to input the length and width of the postal item.

 Grams
 </td>

 </tr>

 <tr>

 <td>

 Length

 </td>

 <td>

 <asp:TextBox ID="txtLength" runat="server" Width="60" Text="0">

 </asp:TextBox>

 </td>

 <td>

 cm

 </td>

 </tr>

 </table>

Check that the design view now displays the input box and labels correctly for length.

Complete this section of the form by adding similar lines of code to input the width of the postal

item, as shown:

 <asp:TextBox ID="txtLength" runat="server" Width="60" Text="0">

 </asp:TextBox>

 </td>

 <td>

 cm

 </td>

 </tr>

 <tr>

 <td>

 Width

 </td>

 <td>

 <asp:TextBox ID="txtWidth" runat="server" Width="60" Text="0">

 </asp:TextBox>

 </td>

 <td>

 cm

 </td>

 </tr>

 </table>

 Chapter 2: Postage Rates 41

Build and run the web page to view the appearance in the web browser.

Close the web browser and return to Visual Studio. Select Debug from the main menu and click the

Stop Debugging option.

This completes the Weight and Length input section of the form. We will now add Envelope Size

Selection options. Begin by creating three graphics images for the different envelope designs, then

save these in .PNG or .JPG format.

 letter1.png letter2.png letter3.png

Go to the Solution Explorer window and right click the Postage Rates project icon. Select Add / New

Folder, and give this the name ‘Images’. Right click the Images folder and select ‘Add / Existing

item’. Find the envelope images which you created, and upload these to the project.

42 Web Applications with C#.ASP

Return to the Calculator HTML page and add code to create three image buttons to display the

envelope graphics, as shown below. We will making use of a table within the envelopeOptions

division.

 <div id="envelopeOptions">

 <table>

 <tr><td>

 <asp:ImageButton ID="ImageButton1"

 ImageUrl="~/Images/letter1.png" runat="server" />

 <asp:ImageButton ID="ImageButton2"

 ImageUrl="~/Images/letter2.png" runat="server" />

 <asp:ImageButton ID="ImageButton3"

 ImageUrl="~/Images/letter3.png" runat="server" />

 </td></tr>

 </table>

 </div>

Go to the Design screen to view the layout of the components we have added so far.

We can now begin to add functionality to the application.

Double-click the ‘A4 envelope’ image. A C# code window will open. The appearance should be

familiar if you have previously worked on C# stand-alone programs. Notice that an empty

ImageButton_Click method has been created, ready for you to add your own processing code.

namespace Postage_Rates

{

 public partial class Calculator : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void ImageButton1_Click(object sender, ImageClickEventArgs e)

 {

 }

 }

}

 Chapter 2: Postage Rates 43

The size of an A4 envelope is approximately 32cm by 22cm. Add code to the Button_Click method

which will insert these measurements into the Length and Width input boxes.

 protected void ImageButton1_Click(object sender, ImageClickEventArgs e)

 {

 txtLength.Text = "32";

 txtWidth.Text = "22";

 }

Build and run the web page. Click the A4 envelope image, and check that the measurements are

inserted into the text boxes correctly. Return to Visual Studio and click the option to stop

debugging.

Go to the Design screen and double click the other two envelope images to create Button_Click

methods, and insert code in a similar way to generate the corresponding Length and Width values.

 protected void ImageButton1_Click(object sender, ImageClickEventArgs e)

 {

 txtLength.Text = "32";

 txtWidth.Text = "22";

 }

 protected void ImageButton2_Click(object sender, ImageClickEventArgs e)

 {

 txtLength.Text = "22";

 txtWidth.Text = "16";

 }

 protected void ImageButton3_Click(object sender, ImageClickEventArgs e)

 {

 txtLength.Text = "22";

 txtWidth.Text = "11";

 }

44 Web Applications with C#.ASP

The next section to produce is a radio button group for entering the thickness of the postal item.

The first two categories, up to 0.5cm and up to 2.5cm thickness, do not require exact measurements

to be provided. However, for items more than 2.5cm thick it is necessary to give the actual

measurement. We can again lay out the required components as a small table within a cell of the

main table.

Go to the Calculator HTML page and add code to the thickness table division:

 <div id="thickness">

 <table>

 <tr>

 <td>

 Thickness

 </td>

 <td>

 <asp:RadioButton GroupName="thickness" ID="thin" checked="true"

 runat="server" />

 </td>

 <td>

 up to 0.5cm

 </td>

 </tr>

 <tr>

 <td></td>

 <td>

 <asp:RadioButton GroupName="thickness" ID="medium" runat="server" />

 </td>

 <td>

 over 0.5cm and up to 2.5cm

 </td>

 </tr>

 <tr>

 <td> </td>

 <td>

 <asp:RadioButton GroupName="thickness" ID="thick" runat="server" />

 </td>

 <td>

 over 2.5cm: enter the thickness

 </td>

 <td>

 <asp:TextBox ID="txtThickness" runat="server" Width="60" Text="0">

 </asp:TextBox>

 </td>

 <td>cm</td>

 </tr>

 </table>

 </div>

 Chapter 2: Postage Rates 45

Build and run the page to see the effects of this code.

We have given all three radio buttons the same GroupName of "thickness" to link them together as

a group, so that only one of the buttons can be selected at a time.

The final components to add to the form are: the button to carry out the calculation, and a list box

for displaying the postage rates which are found. Add code to the ‘button and output results’

division of the HTML page.

 <div id="buttonAndResultsOutput">

 <table>

 <tr>

 <td align="center">

 <asp:Button ID="btnCalculate" runat="server"

 Text="Display postage rate options"/>

 </td>

 </tr>

 <tr>

 <td>

 <asp:ListBox ID="ListBox1" runat="server" Height="180px"

 Width="360px">

 </asp:ListBox>

 </td>

 </tr>

 </table>

 </div>

46 Web Applications with C#.ASP

Go to the Design preview page to see the layout of the components which have just been added.

That completes the screen design, and we can now work on the C# code to calculate the postage

rates. Double click the ‘Display postage rate options’ button to create a Button_Click method.

Add code to the Button_Click method which will call two other methods:

 checkValues() is an error trapping procedure to ensure that correct data has been entered

by the user.

 calculateCost() will determine the postal rates and display these in the list box.

Add empty methods for checkValues() and calculateCost()

 protected void btnCalculate_Click(object sender, EventArgs e)

 {

 checkValues();

 if (error == false)

 {

 calculateCost();

 }

 }

 protected void checkValues()

 {

 }

 protected void calculateCost()

 {

 }

 Chapter 2: Postage Rates 47

Go to the top of the C# code page and add the variables which we will need during the calculation:

 public partial class Calculator : System.Web.UI.Page

 {

 Boolean error = false;

 double weight1;

 double weight2;

 double weight;

 double length;

 double width;

 double thickness;

 protected void ImageButton1_Click(object sender, ImageClickEventArgs e)

 {

 txtLength.Text = "32";

 txtWidth.Text = "22";

 }

We will begin work on the error trapping procedure by setting up a try..catch block in the

checkValues() method. This will provide a general error message if text or symbols are entered

instead of numbers in any of the input boxes:

 protected void checkValues()

 {

 ListBox1.Items.Clear();

 try

 {

 }

 catch

 {

 ListBox1.Items.Add("Incorrect data entered");

 }

 }

We can now check for more specific errors.

We begin by adding code to identify a missing weight value.

 The Kilograms or Grams input box may have been left blank by the user, for example: if the

postal item was less than one kilogram in weight, or was an exact number of kilograms with

no additionals grams needing to be shown. In this case, we will insert a zero figure into the

empty box.

 The Kilogram and Gram textBox entries are converted to number format, then the total

number of grams is calculated.

 If the weight is found to be zero, an error message is displayed in the listBox.

48 Web Applications with C#.ASP

 protected void checkValues()

 {

 ListBox1.Items.Clear();

 try

 {

 if (txtKilos.Text == "")

 {

 txtKilos.Text = "0";

 }

 if (txtGrams.Text == "")

 {

 txtGrams.Text = "0";

 }

 weight1 = Convert.ToDouble(txtKilos.Text);

 weight2 = Convert.ToDouble(txtGrams.Text);

 weight = weight1 + (weight2 / 1000);

 if (weight == 0)

 {

 ListBox1.Items.Add("Weight must be entered");

 error = true;

 }

 }

 catch

 {

 ListBox1.Items.Add("Incorrect data entered");

 }

 }

Build and run the web page to test the error trapping for the Weight entry. If Kilograms and Grams

are both entered as zero values or left blank, an error message should appear in the list box to say

that a weight must be entered.

 Chapter 2: Postage Rates 49

If text characters are entered in place of numbers, then the general error message indicating

incorrect data should be displayed.

Add similar code to check for blank or zero entries in the Length and Width input boxes.

 if (weight == 0)

 {

 ListBox1.Items.Add("Weight must be entered");

 error = true;

 }

 if (txtLength.Text == "")

 {

 txtLength.Text = "0";

 }

 length = Convert.ToDouble(txtLength.Text);

 if (length == 0)

 {

 ListBox1.Items.Add("Length must be entered");

 error = true;

 }

 if (txtWidth.Text == "")

 {

 txtWidth.Text = "0";

 }

 width = Convert.ToDouble(txtWidth.Text);

 if (width == 0)

 {

 ListBox1.Items.Add("Width must be entered");

 error = true;

 }

50 Web Applications with C#.ASP

We now come to the Thickness entry. The error checking is different in this case, as one of the radio

buttons must have been selected. A numerical input is only required for items thicker than 2.5cm.

Notice that we earlier assigned the return values ‘thin’, ‘medium’ and ‘thick’ to the three radio

buttons, so the program is able to identify which button is selected.

<asp:RadioButton GroupName="thickness" ID="thin" runat="server" />

<asp:RadioButton GroupName="thickness" ID="medium" runat="server" />

<asp:RadioButton GroupName="thickness" ID="thick" runat="server" />

At the same time that the entries are checked, it is a good opportunity to set the numerical thickness

value which will be used in the calculation of the correct postage rate. For thin items, we will assign

a default value of 0.5cm, and for medium items a value of 2.5cm.

 if (width == 0)

 {

 ListBox1.Items.Add("Width must be entered");

 error = true;

 }

 if (thick.Checked == true)

 {

 if (txtThickness.Text == "" || txtThickness.Text == "0")

 {

 ListBox1.Items.Add("Thickness must be entered");

 error = true;

 }

 else

 {

 thickness = Convert.ToDouble(txtThickness.Text);

 }

 }

 if (thin.Checked)

 {

 thickness = 0.5;

 }

 if (medium.Checked)

 {

 thickness = 2.5;

 }

 Chapter 2: Postage Rates 51

Compile and run the program. Check that all error messages are now displayed correctly.

If the program completes the checkValues() method with the error variable still set to false, we can

be confident that correct entries have been made for weight, length, width and thickness. The

program can then proceed to the calculation of the postage rate.

Return to the C# code page and find the empty calculateCost() method which you set up earlier.

Add some preliminary lines of code. The first IF condition will exchange the Length and Width

values if necessary, to ensure that Length is the largest value. We are also setting up a series of

Boolean (true/false) values which will be used to identify the postage category to which the item

belongs.

 protected void calculateCost()
 {
 if (width > length)
 {
 double temp = length;
 length = width;
 width = temp;
 }

 ListBox1.Items.Add("POSTAGE OPTIONS");

 Boolean letter = false;
 Boolean largeLetter = false;
 Boolean smallParcel = false;
 Boolean mediumParcel = false;
 Boolean largeParcel = false;
 }

52 Web Applications with C#.ASP

We can now add sections of code to check the size and weight requirements for letters. From the

information in the postage rates table, a Letter must be no larger than 24cm in length, 16.5cm in

width, 0.5cm in thickness, and weigh no more than 0.1Kg (100g).

We will not send the item as a Large letter if it can be sent in the cheaper Letter category.

 Boolean mediumParcel = false;
 Boolean largeParcel = false;

 if (length <= 24 && width <= 16.5 && thickness == 0.5 && weight <= 0.1)
 {
 letter = true;
 }

 if (length <= 35.3 && width <= 25 && thickness <= 2.5 && weight <= 0.75)
 {
 if (letter == false)
 {
 largeLetter = true;
 }
 }

Add similar code to identify a Small parcel, Medium parcel or Large parcel by means of its weight

and size.

 if (letter == false)
 {
 largeLetter = true;
 }
 }

 if (letter == false && largeLetter == false)
 {

 if (length <= 45 && width <= 35 && thickness <= 8 && weight <= 2)
 {
 smallParcel = true;
 }

 if (length <= 61 && width <= 46 && thickness <= 46 && weight <= 20)
 {
 if (smallParcel == false)
 {
 mediumParcel = true;
 }
 }

 if ((weight > 1 && weight <= 30) &&
 (length > 61 || width > 46 || thickness > 41))
 {
 largeParcel = true;
 }
 }

 Chapter 2: Postage Rates 53

We have now identified the postal item as belonging to one of the postage rate categories. The final

step is to determine the postage payable.

Begin by adding code to determine and output the first class and second class postage rates in the

case of a Letter.

 {
 largeParcel = true;
 }
 }

 if (letter == true)
 {
 ListBox1.Items.Add("Letter");
 ListBox1.Items.Add("First class: 60p");
 ListBox1.Items.Add("Second class: 50p");
 }

Compile and run the web page. Enter test data for a Letter size and weight then click the Display

postage rate options button. Check that the correct charges are shown.

54 Web Applications with C#.ASP

The charges for a Large letter are more complicated to calculate, as these depend on the weight of

the item.

A series of weight bands are given in the postage rates table, and we use IF..ELSE.. conditional

structures to find the correct band for the item. Add code to do this.

 if (letter == true)
 {
 ListBox1.Items.Add("Letter");
 ListBox1.Items.Add("First class: 60p");
 ListBox1.Items.Add("Second class: 50p");
 }

 if (largeLetter == true)
 {
 string first;
 string second;
 ListBox1.Items.Add("Large Letter");
 if (weight <= 0.1)
 {
 first = "0.90";
 second = "0.69";
 }
 else
 {
 if (weight <= 0.25)
 {
 first = "1.20";
 second = "1.10";
 }
 else
 {
 if (weight <= 0.5)
 {
 first = "1.60";
 second = "1.40";
 }
 else
 {
 first = "2.30";
 second = "1.90";
 }
 }
 }
 ListBox1.Items.Add("First class: £" + first);
 ListBox1.Items.Add("Second class: £" + second);
 }

 Chapter 2: Postage Rates 55

Compile and run the program to check that postage costs for Large letters are calculated correctly.

The next category to include is Small parcels. We again have more than one weight band. Add the

block of code for Small parcels below the code for Large letters:

 if (smallParcel == true)
 {
 string first;
 string second;
 ListBox1.Items.Add("Small Parcel");
 if (weight <= 1)
 {
 first = "3.00";
 second = "2.60";
 }
 else
 {
 first = "6.85";
 second = "5.60";
 }
 ListBox1.Items.Add("First class: £" + first);
 ListBox1.Items.Add("Second class: £" + second);
 }

56 Web Applications with C#.ASP

Compile and run the program. Check that different weights of Small parcel are identified correctly

and the corresponding postal charges are displayed.

The postage rate calculations for Medium parcels and Large parcels are left as a challenge for you to

complete yourself.

In both cases, a number of weight bands will be found in the postage rates table.

